Методика контроля состояния труб и сварных соединений. Ультразвуковой контроль труб Схема экспериментального определения расстояния

ОТРАСЛЕВОЙ СТАНДАРТ

КОНТРОЛЬ НЕРАЗРУШАЮЩИЙ.

СВАРНЫЕ СОЕДИНЕНИЯ ТРУБОПРОВОДОВ

Ультразвуковой метод

ОСТ 36-75-83

ОТРАСЛЕВОЙ СТАНДАРТ

Приказом Министерства монтажных и специальных строительных работ СССР от 22 февраля 1983 г. № 57 срок введения установлен

Настоящий стандарт распространяется на стыковые кольцевые сварные соединения технологических трубопроводов на давление не более 10 МПа (100 кгс/см 2), диаметром от 200 мм и более и толщиной стенки от 6 мм и более из низкоуглеродистых и низколегированных сталей, выполненных всеми видами сварки плавлением и устанавливает требования к неразрушающему контролю ультразвуковым методом. Стандарт разработан с учетом требований ГОСТ 14782-76, ГОСТ 20415-75, а также рекомендаций СЭВ PC 4099-73 и PC 5246-75. Необходимость применения ультразвукового метода контроля его объем и требования к качеству сварных соединений устанавливаются нормативно -технической документацией на трубопроводы. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ ПРИКАЗОМ Министерства монтажных и специальных строительных работ СССР от 22 февраля 1983 г. № 57 ИСПОЛНИТЕЛИ: ВНИИмонтажспецстрой Попов Ю.В., канд. техн. наук (руководитель темы), Григорьев В.М., ст. н. с. (ответственный исполнитель), Корниенко A . M ., ст. инженер (исполнитель) СОИСПОЛНИТЕЛИ: УкрПТКИмонтажспецстрой Цечаль В.А., руководитель базовой сварочной лаборатории (ответственный исполнитель) ВНИКТИстальконструкция (Челябинский филиал) Власов Л.А., зав. сектором (ответственный исполнитель), Неустроева Н.С., ст. инженер (исполнитель) Центральная сварочная лаборатория треста "Белпромналадка" Воронцов В.П., руководитель группы (ответственный исполнитель) СОГЛАСОВАН: Министерство пищевой промышленности СССР А.Г. Агеев Министерство здравоохранения РСФСР Р.И. Халитов Министерство монтажных и специальных строительных работ СССР Союзстальконструкция В.М. Воробьев В/О "Союзспецлегконструкция" А.Н. Секретов Главстальконструкция B . C . Конопатов Главметаллургмонтаж Ф.Б. Трубецкой Главхиммонтаж В.Я. Курдюмов Главнефтемонтаж К.И. Гонитель Главтехмонтаж Д.С. Корелин Главлегпродмонтаж А.З. Медведев Главное техническое управление Г.А. Сукальский Замдиректора института по научной работе, к. т. н. Ю.В. Соколов И.о. зав. отделом стандартизации, к. т. н. В.А. Карасик Руководитель темы, зав. лабораторией, к. т. н. Ю. B . Попов Ответственный исполнитель, ст. научный сотрудник, и.о. зав. сектором В.М. Григорьев Исполнитель, ст. инженер А.М. Корниенко СОИСПОЛНИТЕЛИ: Директор института УкрПТКИМонтажспецстрой В.Ф. Назаренко Заведующий отделом сварочных работ и трубопроводов Н.В. Выговский Главный конструктор проекта Г.Д. Шкуратовский Ответственный исполнитель, руководитель базовой сварочной лаборатории В.А. Цечаль Директор института ВНИКТИстальконструкция (Челябинский филиал) М.Ф. Чернышев Ответственный исполнитель, зав. сектором Л.А. Власов Начальник центральной лаборатории треста "Белпромналадка" Л.С. Денисов Ответственный исполнитель, руководитель группы В.П. Воронцов

1. НАЗНАЧЕНИЕ МЕТОДА

1.1. Ультразвуковой контроль предназначен для выявления в сварных швах и околошовной зоне трещин, непроваров, несплавлений, пор, шлаковых включений и других видов дефектов без расшифровки их характера, но с указанием координат, условных размеров и количества обнаруженных дефектов. 1.2. Ультразвуковой контроль проводится при температуре окружающего воздуха от +5°С до +40°С. В случаях подогрева контролируемого изделия в зоне перемещения искателя до температур от +5°С до +40°С разрешается проведение контроля при температурах окружающего воздуха до минус 10°С. При этом должны применяться дефектоскопы и искатели, сохраняющие работоспособность (по паспортным данным) при температурах от минус 10°С и ниже. 1.3. Ультразвуковой контроль проводят при любых пространственных положениях сварного соединения.

2. ТРЕБОВАНИЯ К ДЕФЕКТОСКОПИСТАМ И УЧАСТКУ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ

2.1. Требования к дефектоскопистам по ультразвуковому контролю. 2.1.1. Ультразвуковой контроль должен проводиться группой из двух дефектоскопистов. 2.1.2. К проведению ультразвукового контроля допускаются лица, прошедшие теоретическую и практическую подготовку на специальных курсах (в учебном комбинате) в соответствии с программой, утвержденной в установленном порядке, имеющие удостоверение на право проведения контроля и выдачи заключения о качестве сварных швов по результатам ультразвукового контроля. Дефектоскописты должны проходить переаттестацию не реже одного раза в год, а также при перерыве в работе более 6 месяцев и перед допуском к работе после временного отстранения за низкое качество работ. Для проведения переаттестации по месту работы рекомендуется следующий состав аттестационной комиссии: главный сварщик треста, начальник сварочной лаборатории треста, начальник учебных курсов, руководитель группы или старший инженер по ультразвуковой дефектоскопии, инженер по технике безопасности. Результаты переаттестации оформляются протоколами и фиксируются в удостоверении дефектоскописта. 2.1.3. Руководство работами по ультразвуковому контролю должны осуществлять инженерно-технические работники или дефектоскописты не ниже 5 разряда, имеющие стаж работы по данной специальности не менее трех лет. 2.2. Требования к участку ультразвукового контроля сварочной лаборатории. 2.2.1. Участок ультразвукового контроля должен иметь производственные площади, обеспечивающие размещение рабочих мест дефектоскопистов, оборудования и принадлежностей. 2.2.2. На участке ультразвукового контроля размещают: ультразвуковые дефектоскопы с комплектом стандартных искателей; распределительный щит от сети переменного тока частотой 50 Гц напряжением 220 В ± 10%, 36 В ± 10%, переносные колодки сетевого питания, заземляющие шины; стандартные и испытательные образцы, вспомогательные устройства для проверки и настройки дефектоскопистов с искателями; наборы слесарного, электромонтажного и измерительного инструмента, принадлежности (мел, цветные карандаши, бумага, краски); контактную жидкость, масленку, обтирочный материал, фальцевую кисть; рабочие столы и верстаки; стеллажи и шкафы для хранения дефектоскопов с комплектом искателей, образцов, материалов и документации.

3. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

3.1. При работе с ультразвуковыми дефектоскопами необходимо выполнять требования безопасности и производственной санитарии в соответствии с ГОСТ 12.2.007.0-75; СНиП III-4-80, "Правилами технической эксплуатации электроустановок потребителей и правилами техники безопасности при эксплуатации электроустановок потребителей", утвержденными Госэнергонадзором СССР 12.04.1969 г. с внесенными дополнениями и изменениями и "Санитарными нормами и правилами при работе с оборудованием, создающим ультразвук, передаваемый контактным путем на руки работающих № 2282-80", утвержденными Министерством здравоохранения СССР. 3.2. При питании от сети переменного тока ультразвуковые дефектоскопы должны быть заземлены медным проводом сечением не менее 2,5 мм 2 . 3.3. Подключение дефектоскопов к сети переменного тока осуществляют через розетки, установленные электриком к специально оборудованным постам. 3.4. Дефектоскопистам запрещается вскрывать подключенный к источнику питания дефектоскоп и производить его ремонт, ввиду наличия блока с высоким напряжением. 3.5. Запрещается проведение контроля вблизи мест выполнения сварочных работ без ограждения светозащитными экранами. 3.6. Запрещается применять масло в качестве контактной жидкости при проведении ультразвукового контроля вблизи мест кислородной резки и сварки, а также в помещениях для хранения баллонов с кислородом. 3.7. При проведении работ по высоте, в стесненных условиях рабочие места должны обеспечивать дефектоскописту удобный доступ к сварному соединению при соблюдении условий безопасности (сооружение лесов, подмостей, использование касок, монтажных поясов, спецодежды). Запрещается проведение контроля без устройств защиты от воздействия атмосферных осадков на дефектоскописта, аппаратуру и место контроля. 3.8. Дефектоскописты не реже одного раза в год должны проходить медицинские осмотры в соответствии с приказом Министерства здравоохранения СССР № 400 от 30 мая 1969 г. и "Лечебно-профилактическими мероприятиями по улучшению состояния здоровья и условий труда операторов ультразвукового контроля", утвержденными Министерством здравоохранения СССР 15 марта 1976 г. 3.9. К работам по ультразвуковой дефектоскопии допускаются лица в возрасте не моложе 18 лет, прошедшие инструктаж по технике безопасности с регистрацией в журнале по установленной форме. Инструктаж должен проводиться периодически в сроки, установленные приказом по организации (трест, монтажное управление, завод). 3.10. Администрация организации, проводящей ультразвуковой контроль, обязана обеспечить выполнение требований техники безопасности. 3.11. При нарушении правил техники безопасности дефектоскопист должен быть отстранен от работы и вновь допущен к ней после дополнительного инструктажа.

4. ТРЕБОВАНИЯ К АППАРАТУРЕ И МАТЕРИАЛАМ

4.1. Для контроля рекомендуется использовать ультразвуковые импульсные дефектоскопы УДМ-1М и УДМ-3, выпущенные не ранее 1975 года, ДУК-66П (ДУК-66ПМ), УД-10П, УД-10УА, УД-24, специализированный комплект "ЭХО" ("ЭХО-2") или другие дефектоскопы, удовлетворяющие требованиям ГОСТ 14782-76. Основные технические характеристики дефектоскопов приведены в справочном приложении 1. 4.2. Для проведения контроля качества сварных швов в труднодоступных местах (в стесненном пространстве, на высоте) на строительных или монтажных площадках рекомендуется использовать облегченные малогабаритные дефектоскопы: комплект "ЭХО" ("ЭХО-2") или другие аналогичные приборы. 4.3. Дефектоскопы должны быть укомплектованы типовыми или специальными наклонными искателями с углами призм для оргстекла 30°, 40°, 50°, 53°, 54° (55°) на частоты 1,25 (1,8); 2,5; 5,0 МГц и прямыми искателями на частоты 2,5 и 5,0 МГц. Допускается применение искателей других типов с призмами из других материалов. При этом углы призм искателей выбирают такими, чтобы соответствующие им углы ввода были равны углам ввода искателей с призмами из оргстекла. 4.4. Для проверки основных параметров дефектоскопов и искателей, а также параметров контроля в состав комплекта аппаратуры должны быть включены стандартные образцы №№ 1, 2, 3 - по ГОСТ 14782-76 или комплект контрольных образцов и вспомогательных устройств (КОУ-2) по ТУ 25-06.1847-78. Помимо этого должны быть изготовлены испытательные образцы с искусственными отражателями для настройки дефектоскопов. 4.5. Для оценки работоспособности дефектоскопов и искателей на участке ультразвукового контроля следует периодически проверять их основные параметры на соответствие паспортным данным, о чем делают запись в документации на прибор. Вновь полученные дефектоскопы и искатели, у которых параметры не проверены, использовать при контроле не разрешается. 4.6. Условную чувствительность, погрешность глубиномера и линейность развертки, если координаты определяются по шкале экрана ЭЛТ, проверяют на соответствие их значений паспортным данным не реже двух раз в год. 4.7. Условную чувствительность и погрешность глубиномера проверяют по стандартным образцам №№ 1, 2 (черт. 1, 3). Линейность развертки проверяют по методике, изложенной в рекомендуемом приложении 2. 4.8. В искателях, не реже одного раза в неделю проверяют соответствие метки на боковой поверхности призмы точке выхода "О" ультразвукового луча по стандартному образцу № 3 (черт. 2), а угол призмы по стандартному образцу № 1 (черт. 1). 4.9. Дефектоскопы считаются пригодными к работе, если значения проверенных параметров (п. 4.6.) соответствуют значениям, указанным в паспорте на прибор. 4.10. Искатели следует считать пригодными к работе, если значения проверенных параметров (п. 4.8.) не превышают допустимых значений отклонений, указанных в разделе 1 ГОСТ 14782-76. 4.11. Дефектоскопы и искатели, у которых результаты проверки значений параметров оказались неудовлетворительными, подлежат ремонту или замене новыми. Ремонт дефектоскопов, за исключением неисправностей, оговоренных инструкцией по эксплуатации прибора, должен производиться специалистами завода-изготовителя или в специализированных мастерских.

Стандартный образец №3


1 - максимальная амплитуда отраженного сигнала; 2 - точка выхода ультразвукового луча; n - стрела искателя

Стандартный образец №2

1 - шкала; 2 - блок из стали марки 20 ГОСТ 1050-74 в нормализованном состоянии с величиной зерна балла 7 или более по ГОСТ 5839-65; 3 - винт; 4 - отверстие для определения угла ввода луча; 5 - отверстие для проверки мертвой зоны.

5. ПОДГОТОВКА К КОНТРОЛЮ

5.1. Основанием для проведения первичного контроля, а также повторного контроля после устранения дефектов в сварном шве является заявка, подписанная заказчиком. Заявку, форма которой приведена в рекомендуемом приложении 3, регистрируют в сварочной лаборатории в журнале (рекомендуемое приложение 4). 5.2. Контролю подлежат только сварные соединения, принятые по результатам внешнего осмотра и удовлетворяющие требованиям ГОСТ 16037-80. 5.3. Запрещается производить контроль сварных соединений трубопроводов, заполненных жидкостью. 5.4. Рабочие места для выполнения ультразвукового контроля должны быть подготовлены заблаговременно. Для работы в труднодоступных местах и на высоте в помощь дефектоскопистам должен быть выделен вспомогательный персонал. 5.5. Выбор способа прозвучивания, типа искателя, контактной жидкости, схемы контроля. 5.5.1. В зависимости от толщины свариваемых элементов (ГОСТ 16037-80) выбирают такой способ прозвучивания, который позволяет обеспечить контроль сечения всего наплавленного металла (табл. 1). 5.5.2. Расстояние В, на которое по обе стороны от валика усиления шва должна быть подготовлена поверхность зоны перемещения искателя типа ИЦ, выбирается по табл. 1 или в случаях применения других типов искателей вычисляется по формулам:

B 1 = d × tg a -l/2+d+m (1)

При прозвучивании прямым лучом

B 2 =2 d × tg a +d+m (2)

При прозвучивании прямым и однократно отраженным лучом

B 3 =3 d × tg a -l/2+d+m (3)

При прозвучивании однократно и двукратно отраженным лучом

Таблица 1

Параметры ультразвукового контроля

Толщина свариваемых элементов по ГОСТ 16037-80 , мм

Способ прозвучивания*)

Угол призмы искателя, град.

Рабочая частота искателя, МГц

Зона перемещения искателя, мм

Зона зачистки В**, мм

Предельная чувствительность S п (первый браковочный уровень), мм 2

Площадь и линейные размеры вертикальной грани углового отражателя

площадь S мм 2

ширина b мм

высота h мм

от 6 до 7,5 вкл.

Прямым и однократно отраженным лучем

свыше 7,5 до 10 вкл.

Примечания: *) В случае невозможности прозвучивания всего сечения шва прямым и однократно отраженным лучами, допускается прозвучивание однократно- и двукратно-отраженными лучами. **) При прозвучивании швов двукратно отраженным лучом зона зачистки B вычисляется по формуле (3) п. 5.5.2
Схема, поясняющая указанные формулы для определения зоны зачистки, приведена на черт. 4. 5.5.3. Поверхности на расстояние В в обе стороны от усиления шва должны быть очищены от брызг металла, отслаивающейся окалины, ржавчины, грязи и краски. Очищенные поверхности не должны иметь вмятин, неровностей и забоин. Сильно коррелированная поверхность (глубина коррозии более 1 мм) должна подвергаться механической обработке до получения ровной и гладкой поверхности. Для зачистки рекомендуется применять металлические щетки, зубила и шлифмашинки с абразивным кругом. После механической обработки поверхности шероховатость ее должна быть не более R z =40 мкм по ГОСТ 2789-73 . 5.5.4. Зачистка поверхности и удаление контактной жидкости после проведения контроля в обязанности дефектоскописта не входят. 5.5.5. После зачистки сварное соединение размечают на участки и нумеруют так, чтобы можно было однозначно устанавливать место расположения дефекта по длине шва согласно схеме, приведенной на черт. 5 . 5.5.6. Для создания акустического контакта используют трансформаторное масло по ГОСТ 982-80, глицерин - по ГОСТ 6259-75, жидкости, разработанные Таганрогским заводом "Красный котельщик" и Черновицким машиностроительным заводом (рекомендуемое приложение 5). При температурах выше 25 ° С или диаметрах свариваемых элементов менее 300 мм с вертикальным расположением используют в качестве контактных жидкостей автолы 6, 10, 12, 18, солидол - по ГОСТ 4366-76 или другие минеральные масла, аналогичные указанным по вязкости.

Схема определения зон зачистки поверхности около шва сварного соединения

D - толщина свариваемых элементов, мм; a - угол ввода, град; d - расстояние от точки ввода до задней грани искателя, мм; - половина ширины валика усиления шва, мм; B 1 , B 2 , B 3 , - зоны зачистки поверхности при прозвучивании прямым, однократно и двукратно отраженным лучом, мм; m =20 мм

Разметка кольцевого сварного соединения трубопровода на участки и их нумерация

1. Сварное соединение должно быть разделено на 12 равных участков по окружности свариваемых элементов. 2. Границы участков нумеруются цифрами от 1 до 12 по ходу часовой стрелки с указанным направлением движения продукта в трубопроводе. 3. Участки нумеруются двумя цифрами: 1-2, 2-3 и т.д. 4. Граница между участками 11-12 и 12-1 должна проходить через клеймо сварщика, перпендикулярно шву.

5.6. Частоту и угол призмы искателя выбирают, исходя из толщины свариваемых элементов и способа прозвучивания по табл. 1. 5.7. Прозвучивание швов следует выполнять путем поперечно-продольного перемещения искателя по подготовленной в соответствии с п.п. 5.5.2 , 5.5.3 , 5.5.5 поверхности с одновременным поворотом его на угол 3-5 ° в обе стороны от направления поперечного перемещения. Величина шага перемещения искателя должна составлять не более половины диаметра пьезопластины преобразователя (табл. 2). 5.8. Проверка основных параметров контроля. 5.8.1. Перед настройкой дефектоскопа на контроль конкретного изделия должны быть проверены следующие основные параметры контроля в соответствии с требованиями ГОСТ 14782-76: стрела искателя; угол ввода ультразвукового луча в металл; мертвая зона; предельная чувствительность; разрешающая способность. 5.8.2. Стрелу искателя и угол ввода ультразвукового луча проверяют не реже одного раза в смену. 5.8.3. Стрелу искателя определяют по стандартному образцу № 3 по ГОСТ 14782-76 и она не должна быть меньше значений, указанных в табл. 2. 5.8.4. Угол ввода ультразвукового луча определяют по стандартному образцу № 2 по ГОСТ 14782-76 и он не должен отличаться от номинального значения более, чем на ± 1°. Номинальные значения угла ввода для искателей с различными углами призмы приведены в таблице 2.

Таблица 2

ПАРАМЕТРЫ ИСКАТЕЛЯ

Угол призмы (b) искателя, град.

Рабочая частота (f), МГц

Диаметр преобразователя, мм

Стрела искателя, мм

Угол ввода (a) ультразвукового луча (оргстекло-сталь), град.

Примечание: Параметры даны для искателей типа ИЦ (ТУ 25.06.1579-73 - искатели разборные с призмами из оргстекла). 5.8.5. "Мертвую зону" проверяют по стандартному образцу № 2 ГОСТ 14782-76 и при работе наклонными искателями с углами призм от 50° до 55° она не должна превышать 3 мм, а при работе искателями с углами призм 30° и 40° - не должна превышать 8 мм. В стандартном образце должны быть выполнены отражатели типа "боковое сверление" диаметром 2 мм на глубине 3 и 8 мм от поверхности перемещения искателя до центра отверстия (черт. 3). 5.8.6. Предельную чувствительность определяют площадью (мм 2) плоского дна отверстия, сегментного или углового отражателей. Плоское дно отверстия и плоскость сегмента должны быть ориентированы перпендикулярно акустической оси искателя. Амплитуды эхо-сигналов от сегментного отражателя и плоского дна отверстия с одинаковыми площадями будут равны при условии, что высота h сегмента больше длины поперечной волны, а отношение высоты h и ширины b сегмента не менее 0,4. Амплитуды эхо-сигналов от углового отражателя и плоского дна отверстия (или сегментного отражателя) будут равны при условии, что ширина b и высота h вертикальной грани углового отражателя больше длины поперечной волны, отношение h / b удовлетворяет неравенству:

4,0> h / b >0,5,

А площади S п плоского дна отверстия (или сегмента) и S 1 вертикальной грани углового отражателя связаны соотношением:

S п = NS 1 , где

N - коэффициент, определяемый по графику (черт. 6). 5.8.7. Предельную чувствительность проверяют на испытательных образцах с искусственными отражателями, площадь которых выбирается из табл. 1 в зависимости от толщины свариваемых элементов и типа выбранного искателя.

Зависимость коэффициента N от угла a ввода луча

5.8.8. Материал испытательных образцов по акустическим свойствам и чистоте поверхности должен быть аналогичен контролируемому изделию. В испытательных образцах не должно быть дефектов (кроме искусственных отражателей), выявляемых эхо-импульсным методом. 5.8.9. Отражатель типа "отверстие с плоским дном" выполняют в испытательном образце таким образом, чтобы центр отражающей поверхности дна отверстия располагался на глубине d , равной толщине свариваемых элементов (черт. 7). 5.8.10. Испытательные образцы с угловыми или сегментными отражателями должны иметь тот же радиус кривизны, что и контролируемое изделие, если внутренний диаметр свариваемых элементов менее 200 мм. При внутреннем диаметре свариваемых элементов 200 мм и более применяют испытательные образцы с плоскопараллельными поверхностями (черт. 8, 9). Способ изготовления сегментных отражателей приведен в справочном приложении 6. Угловой отражатель в испытательном образце выполняют с помощью приспособления из комплекта КОУ-2. 5.8.11. Результаты проверки предельной чувствительности считают удовлетворительными, если амплитуда сигнала от искусственного отражателя имеет величину не менее 30 мм по экрану ЭЛТ. 5.8.12. Разрешающую способность проверяют по стандартному образцу № 1 по ГОСТ 14782-76. Разрешающую способность считают удовлетворительной, если на экране ЭЛТ четко различимы сигналы от трех концентрически расположенных цилиндрических отражателей диаметрами 15А 7 , 20А 7 , 30А 7 , выполненных в стандартном образце № 1 (черт. 1).

Образец с отражателем типа: "отверстие с плоским дном" для настройки чувствительности дефектоскопа

Испытательный образец с угловым отражателем для настройки чувствительности, определения координат дефектов и выставления зоны контроля дефектоскопа

Где n - число отражений

Испытательный образец с сегментным отражателем для настройки чувствительности, определения координат дефектов и выставления зоны контроля дефектоскопа

Длина испытательного образца определяется по формуле:

L ¢ =(n+1) d × tg a +d+m+25; m=20,

Где n - число отражений

5.9. Настройка дефектоскопа для проведения контроля. 5.9.1. Подключают к дефектоскопу искатель с параметрами, выбранными по табл. 1 в соответствии с толщиной свариваемых элементов, акустическими свойствами металла и геометрией сварного соединения. 5.9.2. Подготавливают дефектоскоп к работе в соответствии с требованиями инструкции по эксплуатации, а затем производят его настройку на контроль конкретного изделия в следующей последовательности (основные операции): устанавливают длительность развертки; настраивают глубиномерное устройство; устанавливают предельную чувствительность (первый браковочный уровень); выравнивают чувствительность с помощью системы временной регулировки чувствительности (ВРЧ); устанавливают поисковую чувствительность; устанавливают длительность и положение строб-импульса. 5.9.3. Устанавливают длительность развертки таким образом, чтобы обеспечить возможность наблюдения на экране ЭЛТ сигнала от максимально удаленного отражателя согласно выбранным параметрам контроля. 5.9.4. Устанавливают строб-импульс таким образом, чтобы его передний фронт находился вблизи зондирующего импульса, а задний - в конце экрана ЭЛТ по линии развертки. 5.9.5. Настраивают глубиномерное устройство дефектоскопа согласно инструкции по эксплуатации. Если в дефектоскопе отсутствует глубиномерное устройство, то необходимо произвести градуировку шкалы экрана ЭЛТ в соответствии с толщиной контролируемого изделия. Методика определения координат по шкале экрана ЭЛТ для комплекта "ЭХО" приведена в рекомендуемом приложении 7. Методика проверки шкалы глубиномера дефектоскопа ДУК-66П приведена в рекомендуемом приложении 8. 5.9.6. Для настройки глубиномерного устройства рекомендуется использовать испытательные образцы с искусственными отражателями типа "боковое сверление" в случае контроля сварных соединений с толщиной стенки более 15 мм (рекомендуемое приложение 8) и образцы с сегментными или угловыми отражателями для сварных соединений с толщиной стенки 15 мм и менее (черт. 8 и 9). 5.9.7. Устанавливают предельную чувствительность (первый браковочный уровень). Значения площади отражателя, соответствующей первому браковочному уровню для конкретного контролируемого изделия определяют по табл. 1. 5.9.8. Настройку дефектоскопа на первый браковочный уровень осуществляют с помощью регуляторов "ослабление" или "чувствительность", "отсечка", "мощность" и ВРЧ так, чтобы высота эхосигнала от искусственного отражателя была равна 30 мм независимо от схемы контроля при отсутствии шумов на рабочем участке развертки. 5.9.9. Устанавливают уровень срабатывания системы автоматической сигнализации дефектности (АСД). 5.9.10. Значения второго браковочного уровня предельной чувствительности устанавливают выше первого на 3 дБ. 5.9.11. Для настройки дефектоскопа на второй браковочный уровень регулятор "ослабление" (дефектоскопов с аттенюатором) поворачивают на 3 дБ влево (против часовой стрелки) или регулятор "чувствительность" (для дефектоскопов без аттенюатора) на 1 деление вправо по часовой стрелке по отношению к первому браковочному уровню. 5.9.12. Устанавливают поисковую чувствительность. Значения уровня поисковой чувствительности устанавливают выше первого браковочного уровня на 6 дБ. 5.9.13. Для настройки дефектоскопа на поисковую чувствительность регулятор "ослабление" поворачивают на 6 дБ влево (против часовой стрелки) или регулятор "чувствительность" на 2 деления вправо (по часовой стрелке) по отношению к значению первого браковочного уровня. 5.9.14. Устанавливают длительность и положение строб-импульса в соответствии с контролируемой толщиной и способом прозвучивания по методике, изложенной в рекомендуемом приложении 9.

6. ПРОВЕДЕНИЕ КОНТРОЛЯ

6.1. Проведение контроля включает операции прозвучивания металла шва и околошовной зоны и определения измеряемых характеристик дефектов. 6.2. Прозвучивание швов выполняют способом поперечно-продольного перемещения искателя, изложенным в п. 5.7. Скорость перемещения искателя должна быть не более 30 мм/с. 6.3. Акустический контакт искателя с поверхностью, по которой он перемещается, обеспечивают через контактную жидкость легким нажатием на искатель. О стабильности акустического контакта свидетельствует уменьшение уровней амплитуд сигналов на заднем фронте зондирующего импульса, создаваемых акустическими шумами искателя, по сравнению с их уровнем при ухудшении или отсутствии акустического контакта искателя с поверхностью изделия. 6.4. Прозвучивание сварных соединений производят на поисковой чувствительности, а определение характеристик выявленных дефектов - на первом и втором браковочных уровнях. Анализируют только те эхо-сигналы, которые наблюдаются в строб-импульсе и имеют высоту не менее 30 мм на поисковой чувствительности. 6.5. В процессе контроля необходимо не реже двух раз в смену проверять настройку дефектоскопа на первый браковочный уровень. 6.6. На первом браковочном уровне дефекты оценивают по амплитуде, а на втором браковочном уровне оценивают условную протяженность, условное расстояние между дефектами и количество дефектов. 6.7. Швы сварных соединений прозвучивают прямым и однократно отраженным лучами с двух сторон (черт. 10). При появлении эхо-сигналов около заднего или переднего фронтов строб-импульса следует уточнить, не являются ли они следствием отражения ультразвукового луча от усиления или провисания в корне шва (черт. 11). Для этого замеряют расстояния L 1 и L 2 - положение искателей (I), при которых эхо-сигнал от отражателя имеет максимальную амплитуду, и затем располагают искатель с другой стороны шва на тех же расстояниях L 1 и L 2 от отражателя, - положение искателей (II). При отсутствии дефектов под поверхностью валика усиления или в корне шва эхо-сигналы на краях строб-импульса наблюдаться не будут. Если эхо-сигнал вызван отражением от усиления шва, то при прикосновении к нему тампоном, смоченным контактной жидкостью, амплитуда эхо-сигнала будет изменяться в такт с прикосновением тампона. Необходимо учитывать, что допустимые подрезы также могут быть причиной появления ложных эхо-сигналов. В этом случае рекомендуется зачистить участок шва, дающий отражение, заподлицо с поверхностью основного металла и затем произвести повторный контроль. При отсутствии дефектов эхо-сигналы на краях строб-импульса наблюдаться не будут.

Схемы прозвучивания швов с симметричной разделкой кромок

А - со скосом двух кромок, б - с криволинейным скосом двух кромок

Схема расшифровки ложных эхо-сигналов

А - от провисания в корне шва; б - от валика усиления шва

6.8. Стыковые соединения со скосом одной кромки при толщине стенки более 18 мм рекомендуется кроме прозвучивания с двух сторон по методике для симметричной разделки дополнительно прозвучивать искателями с углом призмы 54° (53°) со стороны кромки без скоса (черт. 12). При этом, зону перемещения искателя и зону зачистки вычисляют по формулам п. 5.5.2 , а предельную чувствительность (первый браковочный уровень) устанавливают равной 6 мм 2 . 6.9. Когда половина ширины усиления шва l /2 не превышает расстояние L 1 от передней грани искателя до проекции предполагаемого дефекта в корне шва на поверхности сварного соединения, прозвучивание нижней части шва выполняют прямым лучом (черт. 13а), а когда l /2 превышает L 1 нижнюю часть шва прозвучивают двукратно отраженным лучом (черт. 13б). 6.10. Для сравнения значений величин l /2 и L 1 рекомендуется экспериментальным путем определять расстояние L 1 (черт. 14). Искатель устанавливают у торца контролируемой трубы или испытательного образца, используемого для настройки дефектоскопа на первый браковочный уровень. Перемещая искатель перпендикулярно торцу, фиксируют положение искателя, при котором эхо-сигнал от нижнего угла будет максимальным, а затем замеряют расстояние L 1 . 6.11. При одностороннем доступе ко шву его прозвучивают только с одной стороны (черт. 15). Если толщина свариваемых элементов не более 18 мм, шов следует дополнительно прозвучивать искателями с углом призмы 54° (53°) по методике, изложенной в п. 6.8. В заключении и в журнале контроля должна быть сделана соответствующая запись о том, что прозвучивание производилось только с одной стороны шва.

Схемы прозвучивания швов с несимметричной разделкой кромок

А - со скосом одной кромки; б - с криволинейным скосом одной кромки; в - со ступенчатым скосом одной кромки; a 2 > a 1 ; a 2 =54°(53°)

Схема прозвучивания нижней части шва.

А - размер l /2 менее L 1 на такую величину, что зона перемещения искателя, равная L 1 - l /2 позволяет полностью прозвучивать корень шва прямым лучом; б - зона перемещения искателя, равная L 1 - l /2 позволяет прозвучивать только часть корня шва прямым лучом, а остальную часть двукратно отраженным лучом

Схема экспериментального определения расстояния

Схема прозвучивания шва при одностороннем доступе

Схема прозвучивания шва с разной толщиной стенки стыкуемых элементов

6.12. Если стыкуемые элементы имеют разную толщину без скоса стенки большей толщины, то прозвучивание следует выполнять согласно п. 6.7. При появлении сигнала около заднего фронта строб-импульса необходимо учитывать, что при расположении искателя со стороны большей толщины стенки элемента на расстоянии L 1 = tg a от оси шва, сигнал от нижнего угла стенки и сигнал от дефекта в корне шва (черт. 16) могут наблюдаться в виде одного сигнала. Чтобы определить от какого отражателя наблюдается сигнал необходимо установить искатель со стороны меньшей толщины стенки элемента на расстоянии L 1 от оси шва. При этом, если сигнал около заднего фронта строб-импульса не наблюдается, дефект отсутствует, если же сигнал наблюдается, то обнаружен дефект в корне шва. 6.13. Если стыкуемые элементы имеют разную толщину со скосом стенки большей толщины, то со стороны меньшей толщины прозвучивание выполняют согласно п. 6.7, а со стороны большей толщины стенки элемента - согласно схемам изображенным на черт. 17, 18. Толщину стенок стыкуемых труб и фактическую границу (длину) скоса определяют прямым искателем согласно рекомендуемому приложению 10. 6.14. Основными измеряемыми характеристиками выявленных дефектов являются: амплитуда эхо-сигнала от дефекта; координаты дефекта; условная протяженность дефекта; условное расстояние между дефектами; количество дефектов на любом участке шва длиной 100 мм. 6.15. Амплитуду в дБ эхо-сигнала от дефекта определяют по показаниям регулятора "ослабление" (аттенюатора).

Схемы прозвучивания швов прямым и однократно отраженным лучом со стороны элемента большей толщины

Интервалы перемещения искателя при прозвучивании шва: а - прямым лучом от L " до L ", где L "= l /2 + n ; L "= d × tg a ; б - однократно отраженным лучом от до , где =5(d 1 - d)+10+ d 1 × tg a , =2 d 1 × tg a + l /2 ; L =5(d 1 - d).

Схема прозвучивания швов двукратно отраженным лучом со стороны элемента большей толщины

Интервал перемещения искателя от до , где =2 d 1 × tg a + l /2 ; =(2 d 1 + d) tg a

6.16. Координаты дефекта - расстояние L от точки ввода луча до проекции дефекта на поверхность сварного соединения и глубину залегания Н - определяют в соответствии с требованиями инструкций по эксплуатации дефектоскопов (черт. 19) 6.17. Координаты дефекта определяют при максимальной амплитуде отраженного сигнала. Если эхо-сигнал выходит за пределы экрана, то регуляторами "ослабление" или "чувствительность" уменьшают его амплитуду таким образом, чтобы максимум сигнала был в пределах от 30 до 40 мм. 6.18. Условную протяженность дефекта и условное расстояние между дефектами определяют по ГОСТ 14782-76. При измерении этих характеристик крайними положениями искателя следует считать такие, при которых амплитуда эхо-сигнала от дефекта составляет 0,2 от размера по вертикали рабочего поля экрана ЭЛТ.

7. ОБРАБОТКА И ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ КОНТРОЛЯ

7.1. Оценка качества швов сварных соединений. 7.1.1. Измеренные характеристики дефектов швов сварных соединений оценивают в соответствии с требованиями настоящего стандарта и действующей нормативно-технической документации. Предельно допустимые значения измеряемых характеристик дефектов, установленные с учетом требований СНиП III -31-78, приведены в табл. 3. 7.1.2. Качество швов сварных соединений оценивают по результатам контроля по принципу: "годен" - "негоден". Термином "годен" оценивают швы сварных соединений без дефектов или с дефектами, измеряемые характеристики которых не превышают норм, указанных в табл. 3. Термином "негоден" оценивают швы сварных соединений, если в них обнаружены дефекты, измеряемые характеристики которых превышают нормы, указанные в табл. 3.

Определение координат дефектов

Таблица 3

ПРЕДЕЛЬНО ДОПУСТИМЫЕ ЗНАЧЕНИЯ ИЗМЕРЯЕМЫХ ХАРАКТЕРИСТИК И КОЛИЧЕСТВА ДЕФЕКТОВ В ШВАХ СВАРНЫХ СОЕДИНЕНИЙ

Номинальная толщина свариваемых элементов, мм

Оценка по амплитуде

Оценка по условной протяженности, условному расстоянию между дефектами и количеству дефектов

Условная протяженность (мм) дефекта, расположенного на глубине, мм

Количество допустимых по измеряемым характеристикам дефектов на любых 100 мм длины шва

Суммарная условная протяженность (мм) допустимых дефектов на любые 100 мм длины шва, расположенных на глубине, мм

от 6,0 до 20,0 вкл.

Первый браковочный уровень

Второй браковочный уровень

свыше 20,0 до 40,0 вкл.

свыше 40,0 до 50,0 вкл.

Примечание: Два соседних дефекта при условном расстоянии между ними менее условной протяженности меньшего дефекта считаются за один дефект с условной протяженностью равной сумме протяженностей первого дефекта, расстояния между дефектами и второго дефекта. 7.2. Оформление результатов контроля. 7.2.1. Результаты контроля каждого сварного соединения должны быть зафиксированы в журнале и в заключении. 7.2.2. Регистрация результатов контроля в журнале должна производиться дефектоскопистом, проводившим контроль, а правильность оформления указанных данных должна контролироваться лицом, ответственным за оформление документации. 7.2.3. Формы журнала и заключения, а также примеры записей в них приведены в рекомендуемых приложениях 11 и 12. 7.2.4. Журнал контроля и копии заключений должны храниться на предприятии, проводившем контроль, не менее 5 лет после сдачи объекта в эксплуатацию. 7.2.5. Сокращенное описание дефектов в журнале контроля и в заключении должно выполняться в соответствии с ГОСТ 14782-76. 7.2.6. На швы с недопустимыми дефектами, кроме заключения, должны составляться дефектограммы. Форма дефектограммы приведена в рекомендуемом приложении 13.

ПРИЛОЖЕНИЕ 1

Рабочие частоты, МГц

Динамический диапазон аттенюатора, ДБ

Максимальная глубина прозвучивания (по стали), мм

Наличие глубиномера

Размеры рабочей части экрана ЭЛТ, мм

Рабочий диапазон температур, ° К(° С).

Габариты, мм

Масса, кг

Напряжение питания, В

Тип питания

УДМ-1М

0,80; 1,80; 2,50; 5,00

70 диаметр

278-303 (от +5 до +30)

220 × 335 × 423

УДМ-3

0,60; 1,80; 2,50; 5,00

ДУК-66П

125; 2,50; 5,00; 10,00

(от минус 10 до +40)

260 × 160 × 425

ДУК-66ПМ

260 × 170 × 435

220, 127, 36, 24

УД-10П

0,60; 1,25; 2,50; 5,00

50 (ступенями через 2дБ)

278-323 (от +5 до +50)

345 × 195 × 470

От сети переменного тока частотой 50 Гц; аккумуляторы

40 (плавно)

УД-24

1,25; 2,50; 5,00; 10,00

263-323 (от минус 10 до +50)

130 × 255 × 295

То же УД-10УА

500 (по алюминию)

278-424 (от +5 до +50)

520 × 490 × 210

От сети переменного тока частотой 50 Гц Специализированный ультразвуковой комплект "ЭХО"** ("ЭХО-2"***)

258-313 (от минус 15 до +40)

140 × 240 × 397

От сети переменного тока частотой 50 Гц; аккумуляторы Примечания: *Определение координат дефектов осуществляется по шкале экрана ЭЛТ. **Комплект "ЭХО" ("ЭХО-2") выпускает Свердловский опытный завод Главмонтажавтоматики, остальные дефектоскопы - завод "Электроточприбор"ПО "ВОЛНА" г. Кишинев. ***Комплект "ЭХО-2" имеет систему ВРЧ и снабжен цифровым индикатором ИКД-1 для определения координат дефектов.

ПРИЛОЖЕНИЕ 2

МЕТОДИКА ОПРЕДЕЛЕНИЯ ЛИНЕЙНОСТИ РАЗВЕРТКИ СПЕЦИАЛИЗИРОВАННОГО КОМПЛЕКТА "ЭХО"

Линейность линии развертки определяют следующим образом: 1. Подключают прямой искатель к гнезду 1 дефектоскопа. 2. Тумблер переключателя "род работ" устанавливают в положение 1. 3. Устанавливают переключатели аттенюаторов "точно" и "грубо" в положение "0". 4. Регулятором "отсечка шума" при необходимости убирают шумы с линии развертки. 5. Регулятором " " убирают строб-импульс за пределы экрана. 6. Переключатель "развертка грубо" устанавливают в положение "5". 7. Регулятор "развертка плавно" устанавливают в крайнее правое положение. 8. Устанавливают искатель на поверхность стандартного образца № 2 ГОСТ 14782-76. 9. Добиваются на экране максимального числа отраженных донных сигналов так, чтобы они были распределены по всей линии развертки. 10. Измеряют по шкале на экране ЭЛТ расстояние между передними фронтами отраженных сигналов. 11. Линейность считают удовлетворительной, если расстояния между импульсами не отличаются друг от друга более чем на 10%. 12. Аналогичным образом проверяют линейность на остальных диапазонах развертки.

ПРИЛОЖЕНИЕ 3

Наименование организации, выдававшей заявку

ЗАЯВКА №
на ультразвуковой контроль швов сварных соединений

1. Заявку составил ________________________________________________________ (инициалы и фамилия) 2. Наименование объекта __________________________________________________ 3. Наименование и краткая характеристика контролируемого изделия ____________ ________________________________________________________________________ ________________________________________________________________________

(Т - температура, º К (º С); Р - давление (кгс/см 2);

________________________________________________________________________

4. Номер чертежа _________________________________________________________ 5. Схема расположения контролируемых участков, их нумерация, эскиз поперечного сечения шва с указанием геометрии разделки, толщины свариваемых элементов и ширины усиления шва. 6. Номер участка шва или стыка ____________________________________________ 7. Количество стыков (шт.), подлежащих контролю ____________________________ 8. Объем контроля (%) от периметра стыка ___________________________________ 9. Первичный или повторный контроль ______________________________________ ________________________________________________________________________

(если ранее проводился контроль, то необходимо указать

________________________________________________________________________

метод и дату проведения контроля)

10. Внешний и внутренний диаметр (мм) свариваемых элементов ________________ 11. Вид (способ) сварки ___________________________________________________ ________________________________________________________________________ 12. Марка металла свариваемых элементов ___________________________________ 13. Марка электрода ______________________________________________________ 14. Инициалы, фамилия и клеймо сварщика __________________________________ 15. Дата сварки __________________________________________________________ 16. Степень подготовленности рабочего места под проведение контроля согласно требованиям ОСТ ________________________________________________________ ________________________________________________________________________ Заявка подана " " 19 г.

ПРИЛОЖЕНИЕ 4

ФОРМА ЖУРНАЛА РЕГИСТРАЦИИ ЗАЯВОК

ПРИЛОЖЕНИЕ 5

КОНТАКТНЫЕ ЖИДКОСТИ

Контактная жидкость Таганрогского завода "Красный котельщик"

Легкосмывающаяся ингибиторная контактная жидкость имеет следующий состав: вода, л................................................................................................................... 8 нитрит натрия (технический), кг....................................................................... 1,6 крахмал (картофельный), кг............................................................................... 0,24 глицерин (технический), кг............................................................................... 0,45 кальцинированная сода (техническая), кг........................................................ 0,048

Способ приготовления

Соду и нитрит натрия растворяют в 5 л холодной воды и кипятят в чистой посуде. Крахмал растворяют в 3 л холодной воды и вливают в кипящий раствор нитрита натрия и соды. Раствор кипятят 3-4 мин., после чего в него вливают глицерин, затем раствор охлаждают. Контактную жидкость используют при температурах от +3 до +38 º С.

Контактная жидкость Черновицкого машзавода

Контактная жидкость представляет собой водный раствор полиакриламида и нитрита натрия в следующем соотношении: полиакриламид в % ............................................................................................. от 0,8 до 2 нитрит натрия в % ............................................................................................... от 0,4 до 1 вода в % ............................................................................................................ от 98,8 до 97

Способ приготовления

В стальной бачок емкостью 3 литра, снабженный мешалкой при числе оборотов 800-900 об/мин., загружают 500 г технического (8%) полиакриламида и 1,3 л воды, перемешивают в течение 10-15 мин. до получения однородного раствора нитрита натрия. В бункер загружается соответствующее количество полиакриламида, раствора нитрита натрия и воды. Затем включается мотор и содержимое бункера в течение 5-10 мин. многократно перекачивается до получения однородной массы. При использовании насоса производительностью 12,5 л/мин. применяется электромотор мощностью 1 квт.

ПРИЛОЖЕНИЕ 6

Справочное

СПОСОБ ИЗГОТОВЛЕНИЯ СЕГМЕНТНЫХ ОТРАЖАТЕЛЕЙ

Сегментные отражатели изготавливают на поверхности испытательного образца путем фрезерования на координатно-расточном станке по схеме (черт. 1). Диаметр фрезы выбирают в зависимости от требуемой площади сегментного отражателя. Глубину Н фрезерования выбирают по графикам (черт. 2, 3). Угол α наклона фрезы устанавливают равным углу ввода ультразвуковых колебаний. Допускается изготовление сегментных отражателей на фрезерных станках. Глубину Н фрезерования измеряют индикатором с игольчатым нутромером.

Способ изготовления сегментных отражателей

График зависимости глубины фрезерования "Н" от площади сегмента " S " для искателей с разными углами призм (диаметр фрезы 3 мм)

График зависимости глубины фрезерования "Н" от площади " S " для искателей с разными углами призм (диаметр фрезы 6 мм)

ПРИЛОЖЕНИЕ 7

МЕТОДИКА ОПРЕДЕЛЕНИЯ КООРДИНАТ ДЕФЕКТОВ КОМПЛЕКТОМ "ЭХО" ПРИ КОНТРОЛЕ ШВОВ СВАРНЫХ СОЕДИНЕНИЙ

1. Общие указания

1.1. Координаты "Н" и " L " определяют непосредственно по шкале экрана ЭЛТ. 1.2. Для определения координат по шкале выполняют следующие операции: выбирают рабочий диапазон развертки; выставляют положение и длительность строб-импульса в соответствии с зоной контроля шва сварного соединения и проводят градуировку шкалы применительно к толщине свариваемых элементов, вычисляют масштабные коэффициенты К Н и К L . 1.3. Настройку комплекта "ЭХО" проводят по испытательному образцу, который используется для настройки чувствительности при контроле. 1.4. Для удобства вычислений принимают значение малого деления шкалы по горизонтали равным 0,2. 1.5. Регулятором " Y " совмещают линию развертки с нижней горизонтальной линией шкалы, а регулятором "X" совмещают максимум амплитуды зондирующего импульса с первой слева вертикальной линией шкалы экрана. 1.6. Устанавливают переключатель "развертка грубо" в положение "5", а регулятор " " в крайнее правое положение. 1.7. Устанавливают регулятором " " передний фронт строб-импульса вблизи заднего фронта зондирующего импульса (ЗИ), а регулятором " " делают длительность строб-импульса такой, чтобы его задний фронт располагался в конце шкалы.

2. Методика определения координат дефектов при прозвучивании швов сварных соединений прямым лучом

2.1. В соответствии с толщиной 6 свариваемых элементов по табл. 1 определяют масштабный коэффициент К Н.

Таблица 1

2.2. В соответствии с толщиной δ " (частью толщины) шва сварного соединения, контроль которой возможен прямым лучом, равной расстоянию от центра отражателя 1 (типа "боковое сверление") до дна испытательного образца (черт. 1) по формуле определяют число делений, которое необходимо установить между передними фронтами сигналов (1)и (2). 2.3. Перемещая искатель по поверхности испытательного образца (черт. 1) последовательно добиваются максимальных амплитуд сигнала (2) от отражателя 2, находящегося на максимальной глубине и сигнала (1) от отражателя 1. 2.4. Регуляторами "развертка грубо", " " и " " добиваются расстояния между передними фронтами максимальных амплитуд сигналов (2) и (1), равного N больших делений, методом последовательного приближения, (в рассматриваемом на черт. 1 примере N=4,4).

Пример градуировки шкалы при прозвучивании швов сварных соединений прямым лучом

2.5. Совмещают регулятором " " передний фронт строб-импульса с положением переднего фронта сигнала (1). 2.6. Совмещают регулятором " " задний фронт строб-импульса с положением переднего фронта сигнала (2). 2.7. Для определения координат дефекта выставляют максимальную амплитуду сигнала от отражателя, обнаруженного в зоне контроля (например, сигнала (3) от отражателя 3, черт. 1). Затем подсчитывают число делений N i от заднего фронта строб-импульса до переднего фронта сигнала от дефекта в зоне контроля и определяют глубину (H) залегания дефекта по формуле:

H= δ -N i К Н;

В примере на черт. 1 N i = 2,6. 2.8. Расстояние L определяют по формуле:

3. Методика определения координат дефектов при прозвучивании швов сварных соединений прямым и однократно отраженным лучом

3.1. В соответствии с толщиной δ свариваемых элементов по табл. 2 определяют масштабный коэффициент K H .

Таблица 2

3.2. Определяют число делений N п, которое устанавливают между положениями передних фронтов сигналов от отражателей 2 и 4 при прозвучивании однократно отраженным лучом (черт. 2) по формуле:

N п = δ / K H .

3.3. Определяют число делений, которое устанавливают между положениями передних фронтов сигналов (1) и (2) от отражателей 1 и 2 при прозвучивании прямым лучом (черт. 2) по формуле:

N л = δ "/ K H .

3.4. Перемещая искатель по испытательному образцу, добиваются максимальной амплитуды сигнала (4) от отражателя 4 (черт. 2), находящегося на максимальном расстоянии от точки ввода луча при прозвучивании однократно отраженным лучом. 3.5. Устанавливают переключателем "развертка грубо" и регулятором " " сигнал (4) между 8 и 9 большими делениями горизонтальной шкалы. 3.6. Регуляторами " " и " " методом последовательных приближений совмещают передний фронт максимальной амплитуды сигнала (2) от отражателя 2 с серединой шкалы, а передний фронт максимальной амплитуды сигнала (4) от отражателя 4 располагают на расстоянии равном N п делений (п. 3.2 .) от середины шкалы вправо. 3.7. Устанавливают регулятором " " передний фронт строб-импульса на расстоянии равном N л делений (п. 3.3.) от середины шкалы влево, соответствующем положению переднего фронта максимальной амплитуды сигнала (1) от отражателя 1. 3.8. Совмещают регулятором " " задний фронт строб-импульса с положением переднего фронта максимальной амплитуды сигнала (4) от отражателя 4 (п. 3.6.).

Пример градуировки шкалы при прозвучивании швов сварных соединений прямым и однократно отраженным лучом

3.9. Считают все сигналы, обнаруженные в пределах длительности выставленного строб-импульса от его переднего фронта до середины шкалы, выявленными прямым лучом, а от середины шкалы до заднего фронта - однократно отраженным лучом. 3.10. Глубины залегания (Н л, Н п) обнаруженных дефектов в зоне прозвучивания прямым лучом определяют по формуле:

Н л = δ - N л i К Н;

Где N л i - число делений шкалы, отсчитанных от середины до переднего фронта сигнала от дефекта, - а в зоне прозвучивания однократно отраженным лучом определяют по формуле:

Н п = δ - N п i К Н;

Где N п i - число делений шкалы, отсчитанных от заднего фронта строб-импульса до переднего фронта сигнала от дефекта. 3.11. Определяют расстояние L л в зоне прозвучивания прямым лучом по формуле:

L л =Н л · tg α ;

А однократно отраженным лучом по формуле:

L п =(2 δ -Н п) · tg α ;

3.12. Методика настройки комплекта "ЭХО" для определения координат дефектов при одновременном прозвучивании швов сварных соединений однократно- и двукратно отраженным лучами аналогична вышеизложенной. При этом, координаты Н и L определяют по формулам:

Н= N л i К Н;

Где К Н увеличивается в 3 раза по сравнению со значениями табл. 1.

L п =[(n +1) δ -Н п ] · tg α .

ПРИЛОЖЕНИЕ 8

МЕТОДИКА ПРОВЕРКИ ПОГРЕШНОСТИ ГЛУБИНОМЕРА ДЕФЕКТОСКОПА ДУК-66П

1.1. Устанавливают шкалу, выбранную в соответствии с рабочей частотой и углом призмы искателя. 1.2. Перемещают искатель по поверхности испытательного образца и при получении сигнала максимальной амплитуды от каждого из трех отверстий (см. чертеж), измеряют координаты Н и L с помощью глубиномерного устройства. 1.3. Сопоставляют определенные по глубиномеру координаты с координатами, измеренными метрическими средствами непосредственно на образце. 1.4. При превышении допустимой погрешности (по паспорту на дефектоскоп), полученной по результатам вышеуказанного сопоставления рекомендуется направлять прибор на поверку.

Испытательный образец с отражателями типа "боковое сверление" для проверки и корректировки шкалы глубиномера дефектоскопа типа ДУК-66П

ПРИЛОЖЕНИЕ 9

МЕТОДИКА УСТАНОВЛЕНИЯ ДЛИТЕЛЬНОСТИ И ПОЛОЖЕНИЯ СТРОБ-ИМПУЛЬСА

1.1. Длительность и положение строб-импульса устанавливают в соответствии с выбранным способом прозвучивания (прямым, однократно или двукратно отраженным лучом). 1.2. Настройку дефектоскопа осуществляют по испытательному образцу с отражателями, используемому для выставления предельной чувствительности (первый браковочный уровень). 1.3. В дефектоскопах УДМ-1М, УДМ-3, ДУК-66П, ДУК-66ПМ, за исключением комплекта "ЭХО", методика выставления строб-импульса аналогична. 1.4. Методика выставления длительности и положения строб-импульса для комплекта "ЭХО" непосредственно связана с методикой определения координат и изложена в рекомендуемом приложении 7. 1.5. При прозвучивании шва сварного соединения прямым и однократно отраженным лучом, передний фронт строб-импульса выставляют по переднему фронту сигнала с максимальной амплитудой, отраженного от нижнего отражателя (углового или сегментного), а задний фронт строб-импульса - по заднему фронту, сигнала с максимальной амплитудой, отраженного от верхнего отражателя - углового или сегментного (черт. 1). При такой настройке эхо-сигналы, появляющиеся в начале строб-импульса указывают на наличие дефектов в нижней части шва, а эхо-сигналы в конце строб-импульса - на наличие дефектов в верхней части шва.

Схема определения длительности и положения строб-импульса при прозвучивании шва прямым и однократно отраженным лучом

L " вычисляется в зависимости от δ , α и от схемы прозвучивания по формуле: L "=(n +1) d × tg a + d + m +25, где n - число отражений

1.6. При прозвучивании шва сварного соединения двукратно и однократно отраженным лучом, передний фронт строб-импульса выставляют по переднему фронту сигнала с максимальной амплитудой, отраженного от верхнего отражателя, а задний фронт строб-импульса - по заднему фронту максимального сигнала с максимальной амплитудой, отраженного от нижнего отражателя. При такой настройке эхо-сигналы в начале строб-импульса указывают на наличие дефектов в верхней части шва, а эхо-сигналы в конце строб-импульса - на наличие дефектов в нижней части шва (черт.2) 1.7. Положение строб-импульса выставляют регулятором "смещение по X" симметрично относительно середины шкалы экрана ЭЛТ для всех дефектоскопов за исключением комплекта "ЭХО".

Схема определения длительности и положения строб-импульса при прозвучивании шва однократно и двукратно отраженным, лучом

вычисляется в зависимости от δ , α и от схемы прозвучивания по формуле: =(n +1) d × tg a + d + m +25, где n - число отражений

ПРИЛОЖЕНИЕ 10

ОПРЕДЕЛЕНИЕ ТОЛЩИНЫ СТЕНКИ СВАРИВАЕМЫХ ЭЛЕМЕНТОВ И ФАКТИЧЕСКОЙ ГРАНИЦЫ (ДЛИНЫ) СКОСА ПРЯМЫМ ИСКАТЕЛЕМ

1.1. Искатель устанавливают на предварительно подготовленную под контроль с двух сторон шва и покрытую контактной жидкостью поверхность свариваемых элементов на расстоянии не менее 40 мм от линии перехода шва в основной металл. При диаметре свариваемых элементов менее 300 мм указанную поверхность зачищают до получения ровной плоскости шириной большей диаметра прямого искателя (см. чертеж). 1.2. По глубиномерному устройству, настроенному для измерения прямым искателем согласно инструкции к дефектоскопу, определяют толщину стенок свариваемых элементов. 1.3. Для определения фактической границы (длины L ск) скоса искатель перемещают по поверхности элемента, имеющего большую толщину, в сторону шва до появления резкого увеличения расстояния между зондирующим и ближайшим отраженным импульсами по сравнению с расстоянием между остальными многократно отраженными сигналами. Отметив найденное таким образом положение искателя (см. поясняющую схему на чертеже), линейкой измеряют расстояние L ск от осевой линии шва до положения метки на поверхности элемента.

Схема прозвучивания стенок свариваемых элементов прямым искателем для определения их толщины и длины скоса

ЗИ - зондирующий импульс; 1,2,3... сигналы отраженные от противоположной стороны стенки свариваемых элементов

ПРИЛОЖЕНИЕ 11

ЖУРНАЛ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ

Номер заключения и дата его выдачи

Дата проведения контроля

Наименование объекта контроля и его адрес

Объем контроля

Характеристика сварного соединения

Параметры контроля

Результаты контроля

Оценка качества шва сварного соединения

Сведения о повторном контроле

Фамилия дефектоскописта

Подпись дефектоскописта

Примечание

Тип соединения

Индекс (номер) шва по чертежу

Диаметр и толщина свариваемых элементов, мм

Марка стали

Способ сварки

Тип дефектоскопа и его номер

Рабочая частота, МГц

Тип и гол призмы искателя, град

Площадь предельно допустимого эквивалентного дефекта

Номер участка сварного соединения

Сокращенное описание обнаруженных дефектов

Кол-во обнаруженных дефектов на 100 мм длины шва

Условная протяженность дефектов на 100 мм длины шва, мм

ПРИЛОЖЕНИЕ 12

(наименование объекта)

(наименование организации, проводившей контроль-

Линия №

монтажное управление треста, лаборатория)

ЗАКЛЮЧЕНИЕ №___
по проверке качества швов стыковых сварных соединений трубопроводов ультразвуковым методом

Чертеж (формуляр, монтажная схема) № ____________________________________________________________________________ Фамилия, имя, отчество и номер клейма сварщика ____________________________________________________________________ Тип дефектоскопа и его заводской номер ____________________________________________________________________________ Начальник лаборатории _______________________________________________________ подпись (фамилия, имя, отчество) Дефектоскопист по ультразвуковому контролю ___________________________________ подпись (фамилия, имя, отчество)
Примечание: 1. Номер заключения должен являться порядковым номером соответствующей записи в журнале ультразвукового контроля. 2. Схема контроля приведена на обороте.

ПРИЛОЖЕНИЕ 13

ДЕФЕКТОГРАММА №6 СВАРНОГО СОЕДИНЕНИЯ №30 ЗАПИСЬ №21 В ЖУРНАЛЕ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ

(пример заполнения)

Примечание: стрелка "+" указывает направление движения продукта от нас перпендикулярно плоскости чертежа

1. Назначение метода. 2 2. Требования к дефектоскопистам и участку ультразвукового контроля. 2 3. Требования безопасности. 3 4. Требования к аппаратуре и материалам.. 4 5. Подготовка к контролю.. 7 6. Проведение контроля. 14 7. Обработка и оформление результатов контроля. 19 Приложение 1 Рекомендуемые дефектоскопы и их основные технические характеристики. 21 Приложение 2 Методика определения линейности развертки специализированного комплекта " эхо" . 22 Приложение 3 Заявка на ультразвуковой контроль швов сварных соединений. 22 Приложение 4 Форма журнала регистрации заявок. 23 Приложение 5 Контактные жидкости. 23 Приложение 6 Способ изготовления сегментных отражателей. 23 Приложение 7 Методика определения координат дефектов комплектом " эхо" при контроле швов сварных соединений. 25 Приложение 8 Методика проверки погрешности глубиномера дефектоскопа дук-66п.. 28 Приложение 9 Методика установления длительности и положения строб-импульса. 29 Приложение 10 Определение толщины стенки свариваемых элементов и фактической границы (длины) скоса прямым искателем.. 30 Приложение 11 Журнал ультразвукового контроля. 32 Приложение 12 Заключение по проверке качества швов стыковых сварных соединений трубопроводов ультразвуковым методом.. 32 Приложение 13 Дефектограмма №6 сварного соединения №30 запись №21 в журнале ультразвукового контроля. 33

РУКОВОДЯЩИЙ ДОКУМЕНТ

Дата введения 01.07.91

Настоящий руководящий документ устанавливает методику ручного входного ультразвукового контроля (УЗК) качества металла холоднодеформированных, теплодеформированных и горячедеформированных бесшовных труб из углеродистых, легированных и аустенитных сталей, применяемых для изготовления химической, нефтяной и газовой аппаратуры.


Руководящий документ распространяется на трубы диаметром от 57 мм и более с толщиной стенки 3,5 мм и более.

Допускается применять механизированный УЗК металла труб по инструкциям, разработанным специализированными технологическими организациями.

Руководящий документ разработан в соответствии с требованиями «Правил устройства и безопасной эксплуатации сосудов, работающих под давлением», ГОСТ 17410, ОСТ 26-291, технологической инструкции ТИ 101-8-68, ОСТ 108.885.01.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Ультразвуковой контроль проводится с целью выявления внутренних и наружных дефектов труб типа раковин, трещин, закатов, расслоений, плен и других без расшифровки типа, формы и характера обнаруженных дефектов с указанием их количества, глубины залегания и условных размеров.


1.2. Необходимость проведения УЗК металла труб у потребителей устанавливается в следующих случаях:

при поставке труб, не подвергавшихся гидравлическим испытаниям и (или) замене испытаний на контроль физическими методами в соответствии с указаниями п. 3.9 «Правил устройства и безопасной эксплуатации сосудов, работающих под давлением» и п. 2.3.9 ОСТ 26-291;

при использовании труб, изготовленных по техническим требованиям без применения неразрушающих методов контроля, с целью оценки сплошности металла и сортировки труб с учетом требований ТУ 14-3-460 и другой документации, предусматривающей контроль ультразвуковым методом, и последующего их применения, например, для трубопроводов пара и горячей воды;

при введении входного ультразвукового контроля труб на заводе-потребителе по решению конструкторского или технологического подразделения.


1.4. Ультразвуковой контроль проводят после устранения недопустимых дефектов, обнаруженных при визуальном контроле.

1.5. При контроле не гарантируется выявление дефектов в концевых участках трубы на длине, равной половине ширины (диаметра) рабочей поверхности преобразователя.

1.6. Документация на контроль, содержащая отступления от требований настоящего руководящего документа или включающая новые методики контроля, должна согласовываться со специализированными организациями отрасли (НИИхиммашем, ВНИИПТхимнефтеаппаратуры и др.).

2. АППАРАТУРА

2.1. Дефектоскопы и преобразователи

2.1.1. При контроле металла труб должны использоваться ультразвуковые импульсные дефектоскопы типов УД2-12, УД-11ПУ, ДУК-66ПМ или другие, отвечающие требованиям настоящего руководящего документа. Для контроля труб на расслоение допускается использовать ультразвуковые толщиномеры типа «Кварц-6» или другие.

2.1.2. Толщиномеры и дефектоскопы 1 раз в год, а также после каждого ремонта, подлежат обязательной государственной или ведомственной поверке. При поверке должны проводиться визуальный контроль и определение технических характеристик приборов в соответствии с методическими указаниями по поверке и требованиями ГОСТ 23667.


2.1.3. Дефектоскопы должны быть укомплектованы раздельно-совмещенными (PC) и наклонными преобразователями с углом ввода ультразвукового луча 38° и 50° на частоту 2,5 и 5 МГц, удовлетворяющие требованиям ГОСТ 23702.

Мертвая зона должна быть не более:

8 мм - для наклонных преобразователей с углом ввода 38° и 50° на частоту 2,5 МГц;

3 мм- для наклонных преобразователей с углом ввода 38° и 50° на частоту 5 МГц и PCпреобразователей на частоты 2,5 и 5 МГц.

2.1.4. При контактном способе ультразвукового контроля труб с наружным диаметром менее 300 мм рабочая поверхность преобразователя должна соответствовать кривизне поверхности контролируемой трубы. Это достигается обработкой поверхности преобразователя (приложение 1).


Вместо обработки поверхности допускается использование стабилизирующих опор и насадок (см. приложение 1).

2.1.5. Для измерения толщины стенки трубы применяют толщиномеры «Кварц-6», УТ-93П или другие, обеспечивающие аналогичную точность измерений, а также PCпреобразователи на частоту 2,5; 5 или 10 МГц.

2.2. Стандартные образцы

2.2.1. В комплект аппаратуры для проверки и настройки основных параметров дефектоскопов совместно с преобразователями должны входить комплект стандартных образцов CO-1, СО-2 и СО-3 по ГОСТ 14782, стандартные образцы предприятия (по терминологии ГОСТ 17410), юстировочные плитки для толщиномера.

2.2.2. Стандартные образцы CO-1, СО-2, СО-3 применяют для проверки и определения основных параметров контроля:

мертвой зоны;


точки выхода ультразвукового луча;

стрелы преобразователя;

угла наклона акустической оси преобразователя;

угла ввода ультразвукового луча.

2.2.3. Стандартные образцы предприятия используют для настройки глубиномерного устройства и чувствительности дефектоскопа. В качестве стандартного образца предприятия используют отрезок бездефектной трубы (черт. 1), выполненный из того же материала, того же типоразмера и имеющий то же качество поверхности, что и контролируемая труба. Допускается отклонение размеров стандартных образцов предприятия (диаметр, толщина) от размеров контролируемой трубы не более чем на ±10 %. На наружной и внутренней поверхностях образца наносят контрольные дефекты (искусственные отражатели) типа прямоугольных рисок по ГОСТ 17410.


2.2.4. Стандартные образцы предприятия для настройки толщиномера и чувствительности дефектоскопа с PC преобразователем изготовляют ступенчатыми из соответствующего отрезка трубы (черт. 2). В образце выполняют плоскодонное отверстие заданного размера.

2.2.5. Стандартные образцы предприятия разделяют на контрольные и рабочие.

Настройку аппаратуры проводят по рабочим образцам, проверку рабочих образцов - по контрольным образцам не реже 1 раза в квартал. Если разность амплитуд сигнала от рисок и плоскодонного отверстия в рабочем и контрольном образцах превышает ±2 дБ, рабочий образец заменяют новым.

Стандартный образец предприятия для наклонных преобразователей

Маркировать марку стали, диаметр (2R ), толщину стенки S , глубину канавок h

Стандартный образец предприятия для PCпреобразователей

Маркировать марку стали, диаметр D , толщины ступенек (измеренное значение)

3. ПОДГОТОВКА К КОНТРОЛЮ

3.1. Общие положения

3.1.1. При проведении контроля температура окружающего воздуха в зоне контроля должна быть в пределах от 5 до 40 °С, стенки трубы - не более 50 °С.

3.1.2. При проведении контроля на открытом месте в дневное время или при сильном искусственном освещении необходимо принять меры к затемнению экрана индикатора дефектоскопа.

3.1.3. На контролируемых трубах во время проведения контроля не должны проводиться зачистка и другие механические работы, затрудняющие контроль.

Должен быть обеспечен удобный доступ к контролируемой трубе.

3.2. Требования к дефектоскопистам

3.2.1. Для проведения входного ультразвукового контроля металла труб согласно ГОСТ 20415 должны допускаться дефектоскописты, прошедшие теоретическую и практическую подготовку по утвержденной программе, получившие удостоверение на право проведения УЗК, имеющие квалификацию не ниже 3-го разряда, соответствующую требованиям «Единого тарифно-квалификационного справочника работ и профессий рабочих».

Оценка качества металла труб по результатам ультразвукового контроля должна выполняться дефектоскопистами не ниже 4-го разряда.

3.2.2. Ультразвуковой контроль металла труб должен проводиться, как правило, звеном из двух дефектоскопистов, которые поочередно сменяют друг друга при выполнении контрольных операций. При напряжении питания до 36 В допускается выполнять контроль одним дефектоскопистом.

3.2.3. Дефектоскописты УЗК должны проходить переаттестацию, теоретическую и практическую, по месту работы не реже, чем 1 раз в год. При перерыве в работе более 6 месяцев дефектоскописты лишаются права проведения контроля до сдачи повторных испытаний, а свыше 1 года - до прохождения повторного курса обучения и переаттестации.

3.2.4. Проверка работы дефектоскопистов при переаттестации проводится не менее чем на трех отрезках труб с дефектами и оформляется протоколом.

В состав проверочной комиссии должны входить:

начальник отдела неразрушающих методов контроля (ЦЗЛ, ОТК);

начальник лаборатории неразрушающих методов контроля;

инженер по ультразвуковой дефектоскопии;

инженер по технике безопасности; инженер по подготовке кадров.

О прохождении квалификационной проверки в удостоверении дефектоскописта (вкладыше) делается соответствующая запись.

3.2.5. Работа каждого дефектоскописта проверяется не реже 1 раза в неделю путем повторного выборочного ультразвукового контроля не менее 5 % общего количества труб, но не менее одной, проверенных им за смену. Проверку работы могут проводить старший по смене дефектоскопист, инженер или дефектоскопист более высокой квалификации. При обнаружении пропущенных дефектов трубы повторно контролируются в том же объеме другим дефектоскопистом.

При неоднократном обнаружении пропущенных дефектов в течение одного месяца одним и тем же дефектоскопистом должно приниматься решение о лишении его права контроля ультразвуковым методом до проведения внеочередной аттестации не ранее чем через месяц после дополнительного обучения и производственной стажировки.

3.3. Требования к участку контроля

3.3.1. Ультразвуковой контроль должен проводиться в цехе на специально отведенном участке или участке расположения контролируемых труб.

3.3.2. На участке ультразвукового контроля должны быть:

подвод электропитания напряжением 220 (127) и 36 В частотой 50 Гц;

шины заземления оборудования;

подставка или тележки для дефектоскопов;

стеллажи для труб.

3.3.3. В цехах-изготовителях химической и нефтехимической аппаратуры для хранения дефектоскопического оборудования, стандартных образцов, оснастки, инструмента и вспомогательных материалов, а также для проведения подготовительных, наладочных и ремонтных работ должны быть организованы специальные лабораторные помещения ультразвукового контроля с площадью не менее 4,5 м 2 - на каждого работающего в соответствии с требованиями СН 245-71.

3.3.4. В лабораторном помещении УЗК должны быть:

ультразвуковые дефектоскопы с комплектами типовых преобразователей, стандартных и испытательных образцов;

подвод сети переменного тока частотой 50 Гц и напряжением 220 (127) и 36 В;

зарядные устройства типа АЗУ-0,4 или другие;

стабилизатор напряжения при колебаниях напряжения сети, превышающих плюс 5 или минус 10 % от номинального значения;

катушка с переносным сетевым кабелем;

шина заземления;

набор слесарного и мерительного инструмента;

контактная среда и обтирочный материал;

рабочие столы;

стеллажи и шкафы для хранения оборудования и материалов.

3.4. Подготовка поверхности под контроль

3.4.1. Трубы должны быть очищены от пыли, абразивного порошка, грязи, масел, краски, отслаивающейся окалины и других загрязнений поверхности и пронумерованы. Острые кромки на торце трубы не должны иметь заусенцев.

3.4.2. На наружных поверхностях труб не должно быть вмятин, забоин, следов вырубки, затеканий, брызг расплавленного металла и других поверхностных неровностей.

В случае применения механической обработки поверхность должна иметь шероховатость R z ? 40 - по ГОСТ 2789.

3.4.3. Контроль качества подготовки поверхности должны проверять работники службы технического контроля. Рекомендуется изготовить образцы зачистки поверхности.

Трубы предъявляются дефектоскописту полностью подготовленными к контролю.

3.4.4. Для обеспечения акустического контакта между поверхностями преобразователя и изделия рекомендуется использовать контактные среды, указанные в справочном приложении 2. Допускается также использовать технический вазелин, машинное масло, технический глицерин с последующим удалением их с поверхности труб.

При повышенных температурах или большой кривизне поверхности контролируемых труб следует использовать контактную среду более густой консистенции. При пониженных температурах рекомендуется применять автолы или трансформаторное масло.

3.5. Выбор параметров контроля и настройка дефектоскопа

3.5.1. Выбор параметров контроля зависит от наружного диаметра трубы и толщины стенки. Параметрами ультразвукового контроля являются:

точка выхода и стрела преобразователя;

угол ввода ультразвукового луча;

рабочая частота;

предельная чувствительность;

способ прозвучивания;

скорость, шаг сканирования.

Основные параметры ультразвукового контроля металла труб приведены в таблице.

3.5.2. Точку выхода ультразвукового луча и стрелу преобразователя определяют по стандартному образцу СО-3 - по ГОСТ 14782.

3.5.3. Угол ввода ультразвукового луча измеряют с помощью шкалы стандартного образца СО-2-по ГОСТ 14782. Для преобразователей с углом наклона акустической оси 30° и 40° угол ввода должен быть соответственно 38 ± 2° и 50 ± 2°.

3.5.4. Для обеспечения акустического контакта преобразователей, имеющих криволинейную рабочую поверхность (п. 2.1.4), с плоской поверхностью стандартных образцов СО-2 и СО-3, следует применять более густую контактную среду или съемную локальную ванночку с высотой стенок 2 - 3 мм.

3.5.5. Настройка дефектоскопа с преобразователем включает установку рабочей частоты, настройку глубиномера, установку зоны контроля, предельной чувствительности, проверку мертвой зоны.

3.5.6. Установка рабочей частоты производится включением соответствующих кнопок на верхней панели (дефектоскопы УД-11ПУ, УД2-12 и др.), подключением контуров, соответствующих заданной частоте и преобразователю (дефектоскопы ДУК-66ПМ, ДУК-66П) или другими способами в соответствии с указаниями инструкции по эксплуатации прибора.

Параметры ультразвукового контроля

Диаметр трубы, мм

Толщина стенки, мм

Угол ввода

Частота, МГц

Способ прозвучивания

Прямым и однократно отраженным лучом

Св. 75 до 100

Одно- и двукратно отраженным лучом

Прямым и однократно отраженным лучом (для толщин до 8 мм допускается контроль однократно и двукратно отраженным лучом)

Св. 100 до 125

Св. 12 до 18

Св. 125 до 150

Св. 14 до 24

Св. 150 до 175

Св. 16 до 32

Св. 175 до 200

Св. 20 до 36

Св. 200 до 250

Св. 250 до 300

Св. 300 до 400

Св. 400 до 500

Установка зоны контроля для наклонных преобразователей

а - по продольным рискам; б - по кольцевым рискам; в - осциллограммы

При использовании зарубежных дефектоскопов, толщиномеров и преобразователей вместо рабочей частоты 2,5 и 5 МГц допускается применять частоты соответственно 2 и 4 МГц.

3.5.7. Настройка глубиномерного устройства дефектоскопа для наклонного преобразователя проводится по стандартному образцу предприятия (см. черт. 1) с прямоугольными рисками, выполненными на наружной и внутренней поверхностях образца. Начало шкалы настраивают по координатам риски (S , L 1), при прозвучивании ее прямым лучом (черт. 3), конец шкалы настраивают по координатам (2S , L 2), риски на наружной поверхности при прозвучивании ее однократно отраженным лучом. Конец шкалы можно настраивать по риске на внутренней поверхности при прозвучивании двукратно отраженным лучом (координаты 3S , L 3).

Настройка глубиномерного устройства по координатам S , L (соответственно Y , X в дефектоскопе) проводится раздельно для продольных и кольцевых рисок на образце.

3.5.8. Настройка глубиномера дефектоскопа и толщиномера при прозвучивании PCпреобразователем проводится по ступенчатому стандартному образцу предприятия (см. черт. 2) с известными толщинами стенки. Начало шкалы настраивают по координате S o , равной меньшей толщине стенки; конец шкалы настраивают по координате S , равной большей толщине стенки. PС преобразователь рекомендуется устанавливать таким образом, чтобы акустические оси обеих пьезопластин располагались в осевой плоскости трубы. Методика настройки изложена в инструкциях по эксплуатации приборов.

3.5.9. Установку зоны контроля для наклонных преобразователей проводят по эхо-сигналам от рисок. При прозвучивании прямым и однократно отраженным лучом передний фронт строб-импульса устанавливают правее зондирующего сигнала, а задний фронт совмещают с передним фронтом эхо-сигнала 2 от риски на наружной поверхности (см. черт. 3).

В случае прозвучивания стенки трубы однократно и двукратно отраженным лучом передний фронт строб-импульса совмещают с эхо-сигналом 1 от риски на внутренней поверхности, а задний фронт - с эхо-сигналом 3 от этой же риски, полученным двукратно отраженным лучом.

3.5.10. Для PC преобразователя зону контроля следует установить между зондирующим сигналом и донным эхо-сигналом 2 (черт. 4). Эхо-сигнал 3 от плоскодонного отверстия будет располагаться в средней части зоны контроля (0,5S ).

Допускается зону контроля устанавливать между соседними донными сигналами при многократных отражениях от стенки трубы, например, зона 2S - 3S (см. черт. 4в).

3.5.11. Предельную чувствительность дефектоскопа с преобразователем следует настраивать по прямоугольным рискам в стандартном образце предприятия (см. черт. 1). Глубина рисок должна устанавливаться в процентах от толщины стенки трубы из следующего ряда - по ГОСТ 17410: 3, 5, 7, 10, 15 %. Конкретное значение глубины должно устанавливаться техническими условиями на трубы. В случае отсутствия технических требований рекомендуется применять нормативы для оценки сплошности стенки трубы согласно приложению 3.

Эхо-сигналы от контрольных рисок в образце должны быть установлены на экране дефектоскопа высотой не менее 30 мм.

3.5.12. Чувствительность настраивается так, чтобы амплитуда эхо-сигналов от внутренней и внешней рисок, находящихся в зоне контроля, отличались не более чем на 3 дБ. Если это различие нельзя компенсировать электронным устройством или методическим приемом, то контроль труб проводят при настройке чувствительности отдельно для прямого и отраженного луча.

3.5.13. Настройка предельной чувствительности контроля для выявления расслоений проводится по плоскодонному отверстию, расположенному на глубине 0,5S в стандартном образце предприятия (см. черт. 1). Величина диаметра определяется из следующего ряда - по ГОСТ 17410: 1,1; 1,6; 2,0; 2,5; 3,0; 3,6; 4,4; 5,1; 6,2 мм (эквивалентные площади соответственно 1; 2; 3; 5; 7; 10; 15; 20; 30 мм). Конкретное значение диаметра должно устанавливаться техническими условиями на трубы, требованиями чертежей и другой документации. При отсутствии технических требований рекомендуется применять нормативы для оценки сплошности в соответствии с приложением 3.

Установка зоны контроля для PC преобразователя

а - схема прозвучивания; б, в - осциллограммы сигналов

Схема контроля трубы на расслоение

а - схема перемещения преобразователя; б - осциллограмма сигналов

Амплитуда эхо-сигнала от плоскодонного отверстия должна быть установлена на экране дефектоскопа высотой не менее 30 мм, при этом следует учитывать принятое положение зоны контроля на экране дефектоскопа в соответствии с п. 3.5.10.

3.5.14. При поиске дефектов устанавливают поисковую чувствительность ручками (кнопками) ОСЛАБЛЕНИЕ на 6 дБ меньше (по значению).

3.5.15. Правильность настройки предельной чувствительности дефектоскопа с преобразователем следует проверять при каждом включении аппаратуры, а также через каждый час работы.

Проверку характеристик преобразователя проводить по стандартным образцам СО-2, СО-3 не реже двух раз в смену по мере износа преобразователя.

3.5.16. После настройки предельной чувствительности следует проверить мертвую зону путем выявления отверстий диаметром 2 мм в стандартном образце СО-2, расположенных на глубинах 3 и 8 мм в соответствии с требованиями п. 2.1.3. В случае невыявления указанных отверстий необходимо повторить настройку предельной чувствительности в соответствии с пп. 3.5.11 - 3.5.13 или заменить преобразователь.

3.5.17. Скорость сканирования поверхности трубы преобразователем должна быть не более 100 мм/с, шаг сканирования (между соседними траекториями) - не более половины размера пьезопластины в применяемом преобразователе.

Допускается применять другие режимы сканирования, если они указаны в технических требованиях на трубы.

4. ПРОВЕДЕНИЕ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ

4.1. Общие положения

4.1.1. При ультразвуковом контроле труб следует применять следующие направления прозвучивания:

1) хордовое, перпендикулярно образующей цилиндра, - для выявления продольно ориентированных дефектов: рисок, задиров, трещин и др.;

2) вдоль образующей - для выявления поперечно ориентированных дефектов: трещин, раковин и др.;

3) радиальное, вдоль радиуса, - для выявления расслоений, закатов, а также для измерения толщины стенки.

4.1.2. Контроль сплошности стенок труб проводится эхо-импульсным методом по совмещенной схеме включения преобразователя в контактном варианте. В процессе контроля выполняется поперечно-продольное перемещение преобразователя со скоростью не более 100 мм/с с шагом между соседними линиями траектории не более половины размера пьезоэлемента.

4.1.3. Пример определения трудоемкости контроля трубы дан в приложении 4.

4.2. Методика контроля продольных дефектов

4.2.1. Для выявления продольно ориентированных дефектов следует применять хордовое прозвучивание наклонным преобразователем при перемещении его перпендикулярно образующей цилиндра по всей наружной поверхности трубы в одном направлении, а на концах труб - на длине, равной удвоенной толщине стенки, но не менее 50 мм, в двух противоположных направлениях.

Параметры контроля выбирают по таблице.

Прозвучивание выполняется прямым и однократно отраженным лучом. В случае наличия мешающих сигналов в зоне контроля прямым лучом допускается прозвучивание однократно и двукратно отраженным лучом.

4.2.2. Настройка предельной чувствительности проводится по продольным рискам глубиной h в в стандартном образце предприятия (см. черт. 1) согласно требованиям пп. 3.5.11 - 3.5.12.

4.2.3. Схема перемещений преобразователя по поверхности трубы показана на черт. 6а. Рекомендуется перемещение преобразователя проводить по дуге секторами длиной по 100 - 150 мм, в зависимости от диаметра трубы, с последующим поворотом трубы на соответствующий угол для контроля следующего сектора.

4.3. Методика контроля поперечных дефектов

4.3.1. Для выявления поперечно ориентированных дефектов следует применять прозвучивание вдоль образующих цилиндра по наружной поверхности трубы в одном направлении, а на концах труб - на длине, равной удвоенной толщине стенки, но не менее 50 мм, в двух противоположных направлениях. Параметры контроля выбирают по таблице. Прозвучивание выполняется прямым и однократно отраженным лучом, а при наличии мешающих сигналов в зоне контроля - прямым лучом, однократно и двукратно отраженным.

Схемы контроля стенки трубы

а - на продольные дефекты; б - на поперечные дефекты

4.3.2. Настройка предельной чувствительности проводится по поперечным рискам глубиной h в стандартном образце предприятия (см. черт. 1) согласно требованиям пп. 3.5.11 - 3.5.12.

4.3.3. Схема перемещений преобразователя по поверхности трубы показана на черт. 6б.

4.4. Методика контроля расслоений

4.4.1. Контролю с целью выявления расслоений, закатов подлежат концевые участки труб, подвергаемые сварке, с толщиной стенки не менее 10 мм на длине, равной удвоенной толщине стенки, но не менее 50 мм. Прозвучивание выполняется в радиальном направлении PC преобразователем на частоте 2,5 или 5,0 МГц, при этом преобразователь устанавливают таким образом, чтобы акустические оси обеих пьезопластин располагались в осевой плоскости трубы.

4.4.2. Настройка предельной чувствительности проводится по плоскодонному отверстию диаметром d в стандартном образце предприятия (см. черт. 2) согласно требованиям п. 3.5.13.

4.4.3. Схема перемещений преобразователя по поверхности трубы представлена на черт. 5. При отсутствии расслоения на экране дефектоскопа наблюдается только донный сигнал 1 от внутренней поверхности трубы. При наличии расслоения перед донным сигналом появляется сигнал 2 от дефекта, при этом донный сигнал уменьшается или совсем исчезает.

4.4.4. Размеры и конфигурация расслоений определяются условной границей. За условную границу принимают линию, соответствующую таким положением центра преобразователя над дефектом, при которых амплитуда сигнала уменьшается до уровня 15 мм, соответствующего 0,5 амплитуды от плоскодонного отверстия.

Очерчивая условную границу на поверхности трубы, определяют размеры расслоения и его условную площадь.

4.5. Регистрация дефектов

4.5.1. При появлении эхо-сигнала в зоне контроля измеряют следующие характеристики:

координаты расположения отражателя;

амплитуда отраженного сигнала;

условная протяженность дефекта вдоль или поперек оси трубы.

На поверхности трубы отмечают местоположение недопустимых дефектов с указанием глубины.

Указанные характеристики определяются с применением дефектоскопа, настроенного в соответствии с пп. 3.5.11 - 3.5.13.

4.5.2. Координаты отражателя «Ду» и «Дх» определяют с помощью глубиномерного устройства дефектоскопа в соответствии с инструкцией по эксплуатации дефектоскопа по шкале на экране (ДУК-66ПМ) или на цифровом индикаторе (УД2-12).

4.5.3. Амплитуда сигнала измеряется высотой импульса на экране в мм или величиной ослабления сигнала в дБ до уровня 30 мм.

4.5.4. Условная протяженность отражателя измеряется длиной зоны перемещения преобразователя вдоль оси трубы при выявлении продольных дефектов или по дуге окружности при выявлении поперечных дефектов, в пределах которой эхо-сигнал изменяется от максимального значения до уровня 15 мм, соответствующего половине амплитуды сигнала от риски (см. п. 3.5.11).

4.5.5. Регистрации подлежат дефекты, амплитуды сигнала от которых превышают уровень 15 мм на экране дефектоскопа, т.е. уровень 0,5 амплитуды от заданного контрольного отражателя: риски, плоскодонного отверстия.

4.5.6. Эхо-сигналы от дефектов следует отличать от мешающих сигналов.

Причинами появления мешающих (ложных) сигналов могут быть:

неровности поверхности трубы, вызывающие качание преобразователя и появление воздушной прослойки под преобразователем;

избыток контактной среды;

риски и выступы на торцевых поверхностях трубы;

двугранный угол призмы (при малой стреле преобразователя);

линия задержки PC преобразователя.

Мешающие сигналы, вызываемые нарушением акустического контакта или отражениями от углов и границы линии задержки преобразователя отличаются тем, что при перемещении преобразователя они не перемещаются вдоль линии развертки на экране дефектоскопа.

Источники перемещающихся вдоль линии развертки сигналов определяют путем измерения координат Дх, Ду отражателей и их анализа.

А - точечный допустимый дефект, амплитуда сигнала от которого не превышает амплитуду от контрольного отражателя (риски, плоскодонного отверстия);

Д - точечный недопустимый дефект, амплитуда сигнала от которого превышает амплитуду от контрольного отражателя;

БД - протяженный (независимо от длины) недопустимый дефект, амплитуда сигнала от которого превышает уровень амплитуды (30 мм) от контрольного отражателя или протяженный недопустимый дефект, амплитуда сигнала от которого превышает уровень 0,5 амплитуды (15 мм) от контрольного отражателя, а протяженность превышает допустимое значение для продольных и поперечных дефектов (приложение 3);

БА - протяженный допустимый дефект, амплитуда сигнала от которого превышает уровень 0,5 амплитуды (15 мм) от контрольного отражателя, а условная протяженность не превышает допустимого значения для продольных и поперечных дефектов; или протяженный (независимо от длины) дефект, амплитуда сигнала от которого не превышает уровень 0,5 амплитуды от контрольного отражателя;

Р - расслоение или другой дефект (закат, неметаллическое включение), амплитуда сигнала от которого превышает амплитуду от контрольного отражателя (плоскодонного отверстия);

РА - расслоение или другой допустимый дефект, амплитуда сигнала от которого не превышает амплитуду от контрольного отражателя (при контроле РС преобразователем).

4.5.8. После буквенного обозначения дефекта следует указывать:

глубину расположения дефекта от поверхности;

условную протяженность (для дефектов типа БД, БА);

условную (эквивалентную) площадь (для дефектов типа Р, РА).

4.6. Методика контроля толщины стенки

4.6.1. Контроль толщины стенки трубы проводится с применением ультразвуковых толщиномеров (п. 2.1.5) и PCпреобразователей. Допускается в отдельных случаях (недостаточная чувствительность толщиномера, наличие строчечности в металле, вызывающей ложные измерения и др.) применять для измерения толщины ультразвуковые дефектоскопы типа УД2-12 с цифровой индикацией результатов измерения.

Выбор типа преобразователей и рабочей частоты зависит от толщины стенки и марки стали трубы, кривизны и шероховатости поверхности контакта. Порядок выбора конкретного преобразователя указан в руководстве по эксплуатации толщиномера.

4.6.2. Измерение толщины стенки проводится на участках трубы, указанных в технических требованиях (см. приложение 3).

4.6.3. При измерении толщины PC преобразователь должен устанавливаться на поверхность трубы (п. 3.5.8); как правило, акустические оси обеих пьезопластин должны находиться в осевой плоскости трубы.

5. ОЦЕНКА РЕЗУЛЬТАТОВ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ

5.1. По результатам измерения толщины стенки трубы дается заключение о соответствии требованиям, указанным в технических условиях на трубы или другой НТД.

5.2. Оценка сплошности металла труб по результатам УЗК проводится в соответствии с требованиями, установленными в стандартах или технических условиях на трубы.

5.3. При отсутствии технических требований по оценке качества труб в стандартах, ТУ, чертежах рекомендуется применять нормативные требования в соответствии с приложением 3.

6. ОРОШЕНИЕ РЕЗУЛЬТАТОВ КОНТРОЛЯ

6.1. Результаты ультразвукового контроля труб должны быть зафиксированы в журнале регистрации, в заключении, и, в случае необходимости, в карте контроля.

6.2. В журнале должны быть указаны:

номер заказа;

номер контролируемой трубы;

размеры и материал трубы;

стандарт, ТУ на трубы;

техническая документация по ультразвуковому контролю;

глубина риски для настройки чувствительности (см. приложение 3);

площадь плоскодонного отверстия в образце (см. приложение 3);

тип ультразвукового дефектоскопа и толщиномера;

тип преобразователя и угол ввода;

рабочая частота ультразвуковых колебаний.

Пример заполнения журнала и оформления карты контроля указан в приложении 5.

6.3. Рекомендуемая форма заключения по результатам УЗК приведена в приложении 6. Допускается при необходимости давать заключение на партию труб одного типоразмера, одной марки стали (с приложением перечня забракованных труб и сокращенной записью дефектов в соответствии с пунктами 4.5.7, 4.5.8).

7. ТЕХНИКА БЕЗОПАСНОСТИ ПРИ УЛЬТРАЗВУКОВОМ КОНТРОЛЕ

7.1. При проведении работ по ультразвуковому контролю дефектоскопист должен руководствоваться «Правилами технической эксплуатации электроустановок потребителей» и «Правилами техники безопасности при эксплуатации электроустановок потребителей», утвержденными Госэнергонадзором СССР 21.12.84 г., а также ГОСТ 12.2.007.0 «Изделия электротехнические. Общие требования безопасности» и ГОСТ 12.2.007.14 «Кабели и кабельная арматура. Требования безопасности».

7.2. К работе по ультразвуковому контролю допускаются лица не моложе 18 лет, прошедшие инструктаж по правилам техники безопасности (с записью в журнале), имеющие удостоверение о проверке знаний вышеуказанных правил (п. 7.1), а также производственных инструкций предприятия и настоящего руководящего документа.

7.3. Инструктаж по технике безопасности проводится в соответствии с порядком, установленным на предприятии.

7.4. Мероприятия по пожарной безопасности осуществляются в соответствии с требованиями «Типовых правил пожарной безопасности для промышленных предприятий», утвержденных ГУПО МВД СССР в 1975 г. и ГОСТ 12.1.004 «Пожарная безопасность. Общие требования».

7.5. Перед включением дефектоскопа дефектоскопист должен убедиться в наличии надежного заземления. Заземление дефектоскопа в цехе должно выполняться по требованиям ГОСТ 12.1.030 «ССБТ. Электробезопасность. Защитное заземление, зануление».

Заземление ультразвуковых дефектоскопов осуществляется специальной жилой переносного провода, которая не должна одновременно служить проводником рабочего тока. В качестве заземляющего проводника следует использовать отдельную жилу в общей оболочке с фазным проводом, которая должна иметь одинаковое с ним сечение.

Использовать нулевой провод для заземления запрещается. Жилы проводов и кабелей для заземления должны быть медными, гибкими, сечением не менее 2,5 мм.

7.6. Штепсельные розетки для переносных электроприборов должны быть снабжены специальными контактами для присоединения заземляющего проводника. При этом конструкция штепсельного соединения должна исключать возможность использования токоведущих контактов в качестве заземляющих. Соединение заземляющих контактов штепселя и розетки должно осуществляться до того, как войдут в соприкосновение токоведущие контакты; порядок отключения должен быть обратным.

7.7. Подключение дефектоскопа к сети питания и отключение его производит дежурный электрик. На специально оборудованных постах подключать дефектоскоп может дефектоскопист.

7.8. Категорически запрещается работа дефектоскопистов под подъемными механизмами, на неустойчивых шатких конструкциях и в местах, где возможно повреждение проводки электропитания дефектоскопов.

7.9. При использовании на участке контроля подъемных механизмов должны быть учтены требования «Правил устройства и безопасной эксплуатации грузоподъемных кранов», утвержденных Госгортехнадзором СССР в 1969 г.

7.12. В шумных цехах необходимо использовать индивидуальные средства защиты от шума - противошумы - по ГОСТ 12.4.051.

7.13. По возможности рабочие места дефектоскопистов должны быть фиксированы. Если на расстоянии менее 10 м от места контроля проводится сварка или другая работа, связанная с ярким освещением, необходимо установить щиты.

7.14. Принадлежности, используемые дефектоскопистом: масленки, обтирочная ветошь и бумага - должны храниться в металлических ящиках.

7.15. При ультразвуковом контроле следует руководствоваться «Санитарными нормами и правилами при работе с оборудованием, создающим ультразвук, передаваемый контактным путем на руки работающих», № 2282-80, утвержденными Главным Государственным санитарным врачом РСФСР 29.12.80 г.

7.16. Согласно требованиям санитарных норм и правил № 2282-80 и приказа № 700 от 19.06.84 г. Министерства здравоохранения СССР дефектоскописты, поступающие на работу, должны подвергаться обязательному медицинскому осмотру. Принятый на работу персонал должен проходить периодический (один раз в год) медицинский осмотр.

7.17. После капитального и профилактического ремонта дефектоскопы с преобразователями должны быть проверены на допустимые уровни ультразвукового поля - по ГОСТ 12.1.001. При этом параметры ультразвукового поля, воздействующего на руки дефектоскописта, не должны превышать значений, приведенных в санитарных нормах и правилах № 2282-80. Результаты измерений параметров ультразвукового поля должны оформляться протоколом по форме 334, утвержденной приказом Минздрава СССР от 04.10.80 г. № 1030.

7.18. Участок ультразвукового контроля также должен отвечать требованиям санитарных норм и правил № 2282-80, а также ГОСТ 12.1.005 и ГОСТ 12.1.007.

7.19. Для защиты рук от воздействия контактных сред и ультразвука при контактной передаче дефектоскописты должны работать в рукавицах или перчатках, которые не пропускают контактную среду.

При этом необходимо применять две пары перчаток: наружные - резиновые и внутренние - хлопчатобумажные или двухслойные по ГОСТ 20010.

7.20. В холодный и переходный период года дефектоскописты должны быть обеспечены теплой спецодеждой по нормам, установленным для данной климатической зоны или производства.

СПОСОБЫ СОПРЯЖЕНИЯ ПОВЕРХНОСТЕЙ ПРЕОБРАЗОВАТЕЛЯ И ТРУБЫ

1. Обработка поверхности преобразователя

С целью обеспечения надежного контакта рабочую поверхность преобразователя обрабатывают под соответствующую поверхность контролируемой трубы, Рекомендуется иметь набор преобразователей, перекрывающий диапазон по диаметру труб с интервалом ±10 % (например, при радиусах поверхности преобразователей 31, 38, 46 мм перекрывается диапазон контролируемых труб от 57 до 100 мм).

Для разметки корпуса (призмы) преобразователя целесообразно изготовить прозрачные шаблоны (из оргстекла) с рисками (черт. 1а), соответствующими углам наклона акустической оси преобразователя (30° и 40°). На призме преобразователя через точку ввода проводят линию, соответствующую углу a наклона акустической оси (см. черт. 1б). Шаблон накладывают на корпус преобразователя, при этом акустическая ось преобразователя должна совпадать с соответствующей линией на шаблоне (см. черт. 1в). Затем на преобразователе размечают дугу радиусом R . Первоначально обработку призмы выполняют напильником или на наждачном круге, а затем поверхность доводят с помощью шлифшкурки, которую помещают на отрезок трубы. Точность доводки проверяют с помощью шаблона.

По мере износа преобразователя повторяют вышеуказанные операции.

2. Применение стабилизирующих опор

При контроле по цилиндрической поверхности допускается применение стабилизирующих опор (черт. 2), закрепляемых на преобразователе. Размеры опор зависят от типов и размеров применяемых преобразователей.

Схема разметки и доводки поверхности преобразователя

а - шаблон; б - корпус (призма); в - схема разметки; г - доводка

Опора для наклонных преобразователей

Ориентировочные размеры, мм:

A ? H; В =b + 2; С = 8 ? 12; S = 2 ? 3; r = 5 ? 7

n = 4 ? 15 (зависит от типа преобразователя);

а - эскиз опоры;

б - схема установки опоры

Вылет опоры (размер h ) относительно поверхности преобразователя рассчитывают по формуле:

где R - наружный радиус трубы;

r - радиус опоры;

n - стрела преобразователя;

s - толщина стенки опоры.

Пример расчета.

При контроле трубы диаметром 60 мм и размерах r = 6 мм, n = 12 мм, s = 2 мм, вылет h = 1 мм.

Допускается применение опор других конструкций, обеспечивающих необходимое положение преобразователя, например, насадок из износостойкого материала (фторопласта, капролона и др.)

ПРИЛОЖЕНИЕ 2

Справочное

виды контактных сред

1. Контактная среда Черновицкого машиностроительного завода им. Дзержинского (авторское свидетельство № 188116).

1.1. Контактная среда представляет собой водный раствор полиакриламида и нитрита натрия в следующем соотношении (%):

1.2. Способ приготовления

В сосуд объемом около 10 л, снабженный мешалкой с угловой скоростью 800 - 900 об/мин, загружают 4 л воды и 1,5 кг 8 %-ного технического полиакриламида, перемешивают в течение 10 - 15 мин до получения однородного раствора.

Затем прибавляют 600 мл 100 %-ного раствора нитрита натрия.

2. Контактная среда на основе карбоксиметилцеллюлозы (авторское свидетельство № 868573).

2.1. Контактная среда представляет собой водный раствор КМЦ, синтетического мыла и глицерина - по ГОСТ 6259 в следующем соотношении (%):

Промышленность выпускает карбоксиметилцеллюлозу марок 85/250, 85/350 и другие - по МРТУ 6-05-1098 в мелкозернистом, волокнистом и порошкообразном состояниях.

2.2. Контактную среду получают путем размешивания карбоксиметилцеллюлозы в воде в течение 5 - 10 мин, затем раствор выдерживают 5 - 6 ч до полного растворения КМЦ.

Примечание. Расход контактной среда любого вида составляет примерно 0,3 кг на 1 м 2 трубы.

НОРМАТИВНЫЕ ТРЕБОВАНИЯ К ТРУБАМ ДЛЯ ПРОВЕДЕНИЯ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ И ОЦЕНКИ СПЛОШНОСТИ МЕТАЛЛА

Указанные нормативные требования допускается использовать при ультразвуковом контроле труб в случае отсутствия технических требований в стандартах, технических условиях или другой нормативно-технической документации.

Объект контроля - трубы из углеродистых и легированных сталей марок Ст3, 20, 15ГС, 15XM, 12Х11В2МФ и др.

Технические требования

1. Объем контроля

1.1. Контроль продольных и поперечных дефектов проводят в одном направлении наклонными преобразователями, поперечными волнами, в объеме 100 % на концах труб на длине, равной удвоенной толщине, но не менее 50 мм, - в двух противоположных направлениях.

Контроль расслоений на концах труб на длине, равной удвоенной толщине, но не менее 50 мм, проводят PC преобразователями (продольными волнами).

1.2. Контроль толщины стенки проводят на концах труб и в средней части в четырех точках по периметру трубы с шагом 90°.

2. Чувствительность контроля

2.1. Чувствительность при контроле поперечными волнами настраивают по прямоугольным рискам - по ГОСТ 17410 глубиной 10 % от номинальной толщины стенки трубы, но не более 2 мм, шириной 1,5 мм, длиной 100 мм.

2.2. Чувствительность при контроле продольными волнами настраивают по плоскодонному отражателю - по ГОСТ 17410:

диаметром 3,0 мм (площадь 7 мм 2) - для толщины стенки трубы до 10 мм;

диаметром 3,6 мм (площадь 10 мм 2) - для толщины стенки трубы свыше 10 мм до 30 мм;

диаметром 5,1 мм (площадь 20 мм 2) - для толщины стенки трубы свыше 30 мм.

3. Оценка результатов контроля

3.1. К недопустимым дефектам относят:

точечные и протяженные дефекты, амплитуда сигнала от которых превышает контрольный уровень (30 мм);

протяженные продольные дефекты с амплитудой отраженного сигнала более 0,5 амплитуды от контрольной риски, условная протяженность которых более 100 мм для труб диаметром свыше 140 мм и более 65 мм для труб диаметром от 57 до 140 мм;

протяженные поперечные дефекты с амплитудой отраженного сигнала более 0,5 амплитуды от контрольной риски, условная протяженность которых по дуге наружной поверхности более 50 мм.

Примечание. Оценка по глубине рисок и по условной протяженности продольных и поперечных дефектов приведена на основании норм «Технологической инструкции по ультразвуковому контролю качества металла труб» ВНИИПТхимнефтеаппаратуры, Волгоград, 1980, согласованной с ЦНИИТмашем, Москва, 1980 г, и ВНИТИ, г. Днепропетровск, 1980 г., предназначенной для оценки труб, изготовленных по ГОСТ 8731 и применяемых для изготовления трубопроводов пара и горячей воды обвязки печи ППР-600 взамен труб с техническими требованиями по ТУ 14-3-460.

3.2. К недопустимым расслоениям относят дефекты, амплитуда сигнала от которых превышает амплитуду сигнала (30 мм) от плоскодонного отражателя.

3.3. Предельные отклонения по толщине стенки труб не должны превышать:

15 %, -10 % - для труб диаметром до 108 мм;

20 %, -5 % - для труб диаметром более 108 мм.

Примечание. Отклонения по толщине указаны согласно требованиям ТУ 14-3-460.

ПРИЛОЖЕНИЕ 4

ОПРЕДЕЛЕНИЕ ТРУДОЕМКОСТИ КОНТРОЛЯ

Трудоемкость ультразвукового контроля трубы включает затраты времени на контроль продольных и поперечных дефектов, расслоений на концах труб и измерение толщины стенки.

Расчетное время на перемещение преобразователя зависит от скорости и шага сканирования и определяется по формуле:

где D - наружный диаметр трубы, мм;

L - длина трубы, мм;

l o - длина отрезка трубы, подлежащего контролю на расслоение, мм;

v - скорость сканирования, мм/с;

t - шаг сканирования, мм.

С учетом выполнения вспомогательных операций (настройки дефектоскопа, измерения и отметки дефектов, записи результатов контроля и др.) требуется дополнительное время (до 20 - 30 % от расчетного). Таким образом, общее время на контроль трубы составляет:

Т = (1,2 ? 1,3)Т o .

Например, для контроля трубы диаметром 108 мм с толщиной стенки 10 мм и длиной 3 м (при l o = 50 мм, v = 80 мм/с, t = 6 мм) расчетное время Т o = 69 мин, общая трудоемкость Т = 83 - 90 мин.

На измерение толщины стенки требуется ориентировочно по 1 мин на каждую точку (на измерение четырех точек в трех сечениях - 12 мин).


ПРИЛОЖЕНИЕ 5

Журнал ультразвукового контроля труб

№ заказа

Стандарт, ТУ

Марка стали

Длина трубы, мм

Диаметр трубы, мм

Толщина стенки, мм

НТД по УЗК

Тип дефектоскопа, толщиномера

Тип преобразов., угол ввода

Частота, МГц

Глубина риски, мм

Результаты УЗК

Расслоение, мм 2

Фамилия дефектоскописта

Заключение

Измеренная толщина, мм

Точечные дефекты

Протяженные дефекты

Поперечн.

ГОСТ 8731-74

РД 24.200.13-90

ТУ 14-3-460-75

Обозначения (см. раздел 4):

Д-4,5: Д - точечный недопустимый дефект; 4,5 - глубина расположения (мм);

БД-0-60: БД - протяженный недопустимый дефект; 0 - дефект на наружной поверхности;

60 - условная протяженность (мм);

РА < 10: РА - допустимое расслоение, < 10 - эквивалентная площадь (мм 2);

2А-8: 2А - два точечных допустимых дефекта; 8 - глубина расположения (мм).

Карта ультразвукового контроля трубы (развертка труби? 89?4,5)

Условные обозначения:

х - точечный дефект, ?-? (?- - -?) - протяженный наружный (внутренний) дефект.


Наименование предприятия

ЗАКЛЮЧЕНИЕ
по результатам УЗК труб

№ заказа:___________________________________________________________________

№ труб_____________________________________________________________________

Стандарт, ТУ________________________________________________________________

Материал ___________________ Диаметр? толщина стенки _____________________

Длина труб_________________________________________________________________

НТД по ультразвуковому контролю: ГОСТ 17410, РД 24.200.13-90

Результаты контроля

1. Толщина стенки трубы: от _______________________ до _____________________ мм

(соответствует, не соответствует требованиям стандарта, ТУ)

2. Продольные дефекты ______________________________________________________

___________________________________________________________________________

3. Поперечные дефекты ______________________________________________________

(отсутствуют, имеются - дать перечень)

4. Точечные дефекты ________________________________________________________

(отсутствуют, имеются - дать перечень)

5. Расслоения ______________________________________________________________

(отсутствуют, имеются - дать перечень)

Труба признается ____________________________________________________________

(годной, бракованной)

Дефектоскопист УЗК ______________________________________ Подпись (фамилия)

Начальник лаборатории НМК _______________________________ Подпись (фамилия)

информационные данные

1. РАЗРАБОТАН И ВНЕСЕН

Всесоюзным Научно-исследовательским и проектным институтом технологии химического и нефтяного аппаратостроения (ВНИИПТхимнефтеаппаратуры)

РАЗРАБОТЧИКИ

Ф.Н. Пыщев (руководитель темы); В.В. Рязанова

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ указанием Министерства тяжелого машиностроения от 20.09.90 г. № AB-002-1-8993

3. Сведения о сроках и периодичности проверки документа:

Срок первой проверки 1995 г., периодичность проверки - 5 лет

4 ВВЕДЕН ВПЕРВЫЕ

5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Номер пункта, подпункта, перечисления, приложения

ГОСТ 12.1.001-83

2.2; 2.3; 2.4; 4.7 - 4.8

ГОСТ 12.1.004-85

ГОСТ 12.1.005-88

1.1; 1.5; 1.6; 1.7; 1.8; 1.9; 1.10; 1.11

ГОСТ 12.1.030-81

1.1; 1.1.1 - 1.1.2; 1.2 - 1.9

ГОСТ 12.2.007.14-75

ГОСТ 1050-74

ГОСТ 2789-75

ГОСТ 14782-86

ГОСТ 17410-78

ГОСТ 20010-74

ГОСТ 20415-82

ГОСТ 23667-78

4.1 - 4.7; 5.1 - 5.4

ОСТ 26-291-87

ТУ 14-3-460-75

ОСТ 108.885.01-83

1; 2; 5; 6.1; 7; 11

Правила устройства и безопасной эксплуатации сосудов, работающих под давлением (1987 г.)

Правила технической эксплуатации электроустановок потребителей и Правила техники безопасности при эксплуатации электроустановок потребителей (1984 г.)

Э 1.1.1; Э 1.1.3; Э 1.3.1; Э 2.13.2; Б 1.1.1; Б 1.1.2; Б 1.1.6; Б 1.1.7

Санитарные нормы и правила при работе с оборудованием, создающим ультразвук, передаваемый контактным путем на руки работающим (1980 г.)

1. Общие положения. 1

2. Аппаратура. 2

2.1. Дефектоскопы и преобразователи. 2

2.2. Стандартные образцы.. 2

3. Подготовка к контролю.. 5

3.1. Общие положения. 5

3.2. Требования к дефектоскопистам.. 5

3.3. Требования к участку контроля. 6

3.4. Подготовка поверхности под контроль. 6

3.5. Выбор параметров контроля и настройка дефектоскопа. 7

4. Проведение ультразвукового контроля. 11

4.1. Общие положения. 11

4.2. Методика контроля продольных дефектов. 11

4.3. Методика контроля поперечных дефектов. 12

4.4. Методика контроля расслоений. 13

4.5. Регистрация дефектов. 13

4.6. Методика контроля толщины стенки. 15

5. Оценка результатов ультразвукового контроля. 15

6. Орошение результатов контроля. 15

7. Техника безопасности при ультразвуковом контроле. 15

Приложение 1. Способы сопряжения поверхностей преобразователя и трубы.. 17

Приложение 2. Виды контактных сред. 20

Положение 3. Нормативные требования к трубам для проведения ультразвукового контроля и оценки сплошности металла. 21

Приложение 4. Определение трудоемкости контроля. 22

Приложение 5. Журнал ультразвукового контроля труб. 23

Приложение 6. Заключение по результатам УЗК труб. 25

Информационные данные. 25

В строительстве применяют трубы Ø от 28 до 1420 мм с толщиной стенки от 3 до 30 мм. Весь диапазон диаметров по дефектоскопичности условно можно разделить на 3 группы:

  1. Ø от 28 до 100 мм и Н от 3 до 7 мм
  2. Ø от 108 до 920 мм и Н от 4 до 25 мм
  3. Ø от 1020 до 1420 мм и Н от 12 до 30 мм

Согласно исследованиям, которые были проведены в МГТУ им. Н.Э. Баумана за последнее время, в процессе разработки методов ультразвукового контроля сварных соединений труб следует учитывать такой очень важный фактор, как анизотропию упругих характеристик материала труб.

Анизотропия трубной стали, ее особенности

Анизотропи́я - это различие свойств среды (к примеру, физических: теплопроводности, упругости, электропроводности и др.) в разных направлениях внутри данной среды.

В процессе УЗ-контроля сварных соединений магистральных газопроводов, собранных из труб отечественного и зарубежного производства, обнаружены пропуск серьезных корневых дефектов, неточная оценка их координат, существенный уровень акустических шумов.

Выяснилось, что при соблюдении оптимальных параметров контроля и во время его проведения главная причина пропуска дефекта - это наличие значительной анизотропии упругих свойств основного материала. Она влияет на скорость, затухание и отклонение от прямолинейности движения ультразвукового пучка.

Во время прозвучивания металла более 200 штук труб по схеме, изображенной на рис. 1, выяснилось, что среднеквадратичное отклонение скорости волны при таком направлении движения и поляризации равно 2 м/с (для поперечных волн). Отклонения скоростей от табличных величин на 100 м/с и более не являются случайными и связаны, вероятно, с технологией производства проката и труб. Такие отклонения оказывают сильное влияние на распространение поляризованных волн. Помимо указанной анизотропии, обнаружена также неоднородность скорости звука по толщине стенки трубы.

Рис. 1. Обозначения наплавлений в металле трубы: X, Y, Z.- направления распространения ультразвука: х. у.z:- направления поляризации; Y- направление проката: Z- перпендикуляр к плоскости трубы

Структура листового проката слоистая, представляющая собой вытянутые во время деформации волокна металла и прочих включений. Помимо того, из-за воздействия на металл термомеханического цикла прокатки, неравномерные по толщине участки листа подвергаются различным деформациям. Эти особенности становятся причиной того, что скорость звука дополнительно зависит от глубины нахождения прозвучиваемого слоя.

Особенности контроля сварных швов труб различного диаметра

Трубы Ø от 28 до 100 мм

Отличительной особенностью сварных швов труб Ø от 28 до 100 мм с Н от 3 до 7 мм является возникновение провисаний внутри трубы. Это становится причиной появления на экране дефектоскопа ложных эхо-сигналов от них во время контроля прямым лучом, которые совпадают по времени с эхо-сигналами, отраженными от надкорневых дефектов, найденных однократно отраженным лучом. В связи с тем, что эффективная ширина пучка сопоставима с толщиной стенки трубы, то отражатель крайне сложно идентифицировать по местонахождению искателя относительно валика усиления. В центре шва также имеется неконтролируемая зона по причине большой ширины валика шва. Все это является причиной низкой вероятности (10-12%) выявления недопустимых объемных дефектов, хотя недопустимые плоскостные дефекты обнаруживаются намного лучше (~ 85 %). Основные характеристики провисания - глубина, ширина и угол смыкания с поверхностью объекта - являются случайными величинами для этого типоразмера труб; средние значения равны соответственно 2,7 мм; 6,5 мм и 56°30".

Прокат себя ведет как анизотропная и неоднородная среда с довольно сложными зависимостями скоростей упругих волн от направления поляризации и прозвучивания. Скорость звука изменяется примерно симметрично по отношению к середине сечения листа, причем в районе этой середины скорость поперечной волны может сильно (до 10 %) уменьшаться по сравнению с окружающими областями. Скорость поперечной волны в контролируемых объектах изменяется в диапазоне от 3070 до 3420 м/с. На глубине до 3 мм от поверхности проката скорость поперечной волны может незначительно (до 1 %) увеличиться.

Помехоустойчивость контроля значительно повышается в случае использования наклонных раздельно-совмещенных ПЭП типа РСН (рис. 2), которые названы хордовыми. Они были сконструированы в МГТУ им. Н.Э. Баумана. Особенностью контроля является то, что во время поиска дефектов нет необходимости в поперечном сканировании. Оно выполняется только по периметру трубы в момент прижатия к шву передней грани преобразователя.

Рис. 2. Наклонный хордовый РСН-ПЭП: 1- излучатель: 2 - приемник

Трубы Ø от 108 до 920 мм

Трубы Ø от 108 до 920 мм с Н от 4 до 25 мм также соединяют односторонней сваркой без обратной подварки. До недавнего времени контроль данных соединений выполняли с помощью совмещенных ПЭП по методике, составленной для труб Ø от 28 до 100 мм. Но для такой методики контроля требуется наличие довольно большой зоны совпадений (зоны неопределенности). Это значительно снижает точность оценки качества соединения. Помимо того, совмещенные ПЭП характеризуются высоким уровнем реверберационных шумов, которые затрудняют расшифровку сигналов, а также неравномерностью чувствительности, которую не всегда могут компенсировать доступные средства. Использование хордовых раздельно-совмещенных ПЭП с целью контроля этого типоразмера сварных соединений нецелесообразно, поскольку по причине ограниченности величин углов ввода ультразвуковых колебаний с поверхности сварного соединения габариты преобразователей существенно увеличиваются, становится большей и площадь акустического контакта.

В МГТУ им. Н. Э. Баумана созданы наклонные ПЭП с выровненной чувствительностью для выполнения контроля сварных стыков Ø от 100 мм. Выравнивание чувствительности обеспечивает такой выбор угла разворота 2, чтобы верхняя часть и середина шва прозвучивались центральным один раз отраженным лучом, а нижняя часть - прямыми периферийными лучами, которые падают на дефект под углом Y, от центрального. На рис. 3. показан график зависимости угла введения поперечной волны от угла разворота и раскрытия диаграммы направленности Y. В таких ПЭП падающая и отраженная от дефекта волны являются горизонтально поляризованными (SН -волна).

Рис. 3. Изменение угла ввода альфа, в пределе половины угла раскрытия диаграммы направленности РСН-ПЭП в зависимости от угла разворота дельта.

Из графиков ясно, что во время выполнения контроля объектов с толщиной стенки 25 мм неравномерность чувствительности РС-ПЭП достигает 5 дБ, вместе с тем как для совмещенного ПЭП она может достичь 25 дБ. РС-ПЭП характеризуется повышенным уровнем сигнал – помеха и исходя из этого повышенной абсолютной чувствительностью. К примеру, РС-ПЭП без проблем выявляет дефект площадью 0,5 мм2 в процессе контроля сварного соединения толщиной 10 мм как прямым, так и один раз отраженным лучом при отношении полезный сигнал/помеха 10 дБ. Порядок выполнения контроля данными ПЭП такой же, как и совмещенным ПЭП.

Трубы Ø от 1020 до 1420 мм

Сварные стыки труб Ø от 1020 до 1420 мм с Н от 12 до 30 мм выполняют двусторонней сваркой либо с подваркой обратного валика шва. В швах, которые выполнены двусторонней сваркой, обычно, ложные сигналы от задней кромки валика усиления дают не такую большую помеху, как в односторонних швах. Их амплитуда не так велика по причине более плавных очертаний валика. Кроме того, они дальше по развертке. По этой причине, для проведения дефектоскопии это самый подходящий типоразмер труб. Но результаты исследований, проведенных в МГТУ им. Н. Э. Баумана, показывают, что металл данных труб отличается наибольшей анизотропией. Чтобы снизить влияние анизотропии на обнаружение дефектов следует использовать ПЭП на частоту 2,5 МГц с углом призмы 45°, а не 50°, как указано в большинстве нормативных документов. Самую высокую точность контроля удалось получить при использовании ПЭП типа РСМ-Н12. В отличие от методики, составленной для труб Ø от 28 до 100 мм, при контроле данных соединений отсутствует зона неопределенности. В остальном способ контроля аналогичен. При использовании РС-ПЭП настройку скорости и чувствительности развертки также рекомендуется выполнять по вертикальному сверлению. Настройку скорости и чувствительности развертки наклонных совмещенных ПЭП следует производить по угловым отражателям соответствующего размера.

В процессе контроля сварных швов необходимо помнить, что в околошовной зоне бывают расслоения металла, которые затрудняют определение координат дефекта. Зону, в которой найден дефект наклонным ПЭП, необходимо дополнительно проконтролировать прямым ПЭП с целью уточнения характера дефекта и выявления точного значения глубины дефекта.

В атомной, нефтехимической промышленности и атомной энергетике при изготовлении трубопроводов, аппаратов и сосудов часто используют плакированные стали. Для плакировки внутренней стенки данных конструкций используют аустенитные стали, которые наносят методом наплавки, прокатки либо взрыва слоем от 5 до 15 мм.

Процесс контроля данных сварных соединений предусматривает анализ сплошности перлитной части сварного шва, а также зоны сплавления с восстановительной антикоррозионной наплавкой. При этом сплошность тела самой наплавки не контролируется.

Но по причине отличия акустических характеристик основного металла и аустенитной стали, от границы раздела во время проведения ультразвукового контроля появляются эхо-сигналы, препятствующие обнаружению дефектов, к примеру, отслоений плакировки и поднаплавочных трещин. К тому же, наличие плакировки и ее характеристики оказывают значительное влияние на параметры акустического тракта ПЭП.

По этой причине стандартные технологические решения являются неэффективными при контроле толстостенных сварных швов плакированных трубопроводов.

После многолетних исследований ученые выяснили основные особенности акустического тракта. Были получены рекомендации по оптимизации его характеристик и разработана технология выполнения ультразвукового анализа сварных швов с аустенитной плакировкой.

В частности, ученые установили, что при переотражении пучка ультразвуковых волн от границы перлит-аустенитной плакировки почти не меняется диаграмма направленности в случае плакировки прокаткой и значительно изменяется в случае нанесения плакировки наплавкой. Ее ширина существенно растет, а в пределах главного лепестка есть осцилляции в 15-20 дБ в зависимости от метода наплавки. Происходит значительное перемещение точки выхода отражения от границы плакировки пучка по сравнению с его местонахождением, а также изменяется скорость поперечных волн в переходной зоне.

При разработке технологии контроля сварных соединений плакированных трубопроводов учитывали все это. Данная технология предусматривает предварительное обязательное определение толщины перлитной части (глубины проплавления антикоррозионной наплавки).

Для более точного выявления плоскостных дефектов (несплавлений и трещин) лучше использовать ПЭП с углом ввода 45° и на частоту 4 МГц. Более точное обнаружение вертикально ориентированных дефектов на угле ввода 45° в отличие от углов 60 и 70° объясняется тем, что во время прозвучивания последними угол встречи пучка с дефектом близок к третьему критическому, при котором коэффициент отражения поперечной волны минимальный.
Во время прозвучивания трубы снаружи на частоте 2 МГц эхо-сигналы от дефектов экранирует интенсивный и длительный сигнал шума. Устойчивость к помехам ПЭП на частоту 4 МГц в среднем на 12 дБ выше. По этой причине полезный сигнал от дефекта, который находится в непосредственной близости от границы наплавки, будет лучше считываться на фоне помех. И наоборот, во время прозвучивания трубы изнутри через наплавку лучшую устойчивость к помехам обеспечат ПЭП на частоту 2 МГц.

Регламентирует технологию контроля сварных швов трубопроводов с наплавкой документ Госатомнадзора РФПНАЭГ-7-030-91.

В сфере строительства используются трубы диаметром от 28 до 1420 мм с толщиной стенки от 3 до 30 мм. По дефектоскопичности весь диапазон диаметров труб можно условно разбить на три группы:

  1. 28...100 мм и Н = 3...7 мм
  2. 108...920 мм и Н= 4...25 мм
  3. 1020...1420 мм и Н= 12...30 мм

Проведенные специалистами МГТУ им. Н.Э. Баумана исследования показывают, что необходимо учитывать анизотропию упругих свойств материала при разработке методик ультразвукового контроля сварных стыков труб.

Особенности анизотропии трубной стали.

Предполагается, что скорости распространения поперечных волн не зависят от направления прозвучивания и постоянны по сечению стенки трубы. Но при ультразвуковом контроле сварных соединений магистральных газопроводов, выполненных из зарубежных и российских труб, выявлены значительный уровень акустических шумов, пропуск крупных корневых дефектов, а также неправильная оценка их координат.

Установлено, что при соблюдении оптимальных параметров контроля и соблюдении процедуры его проведения основной причиной пропуска дефекта является наличие заметной анизотропии упругих свойств основного материала, что оказывает влияние на скорость, затухание, отклонение от прямолинейности распространения ультразвукового пучка.

Прозвучив металл более чем 200 труб по схеме, представленной на рис. 1, выявлено, что среднеквадратичное отклонение скорости волны при данном направлении распространения и поляризации составляет 2 м/с (для поперечных волн). Отклонения скоростей от табличных на 100 м/с и более не случайны и связаны скорее всего с технологией производства проката и труб. Отклонения в таких масштабах значительно влияют на распространение поляризованных волн. Помимо описанной анизотропии, выявлена неоднородность скорости звука по толщине стенки трубы.

Рис. 1. Обозначения наплавлений в металле трубы: X, Y, Z.- направления распространения ультразвука: х. у.z:- направления поляризации; Y- направление проката: Z- перпендикуляр к плоскости трубы

Листовой прокат обладает слоистой текстурой, представляющей собой в волокна металла и неметаллических включений, вытянутые в процессе деформации. Неодинаковые по толщине зоны листа подвержены различным деформациям в результате воздействия на металл термомеханического цикла прокатки. Это ведет к тому, что на скорость звука дополнительно влияет глубина залегания прозвучиваемого слоя.

Контроль сварных швов труб различного диаметра.

Трубы диаметром 28...100 мм.

Сварные швы у труб диаметром от 28 до100 мм и высотой от 3 до 7 мм имеют такую особенность как образование провисаний внутри трубы, это при контроле прямым лучом приводит к появлению на экране дефектоскопа ложных эхо-сигналов, которые совпадают по времени с эхо-сигналами, отраженными от надкорневых дефектов, которые обнаруживаются однократно отраженным лучом. Так как эффективная ширина пучка соразмерна с толщиной стенки трубы, то отражатель обычно не удается найти по местоположению искателя относительно валика усиления. Также имеет место также наличие неконтролируемой зоны в центре шва из-за большой ширины валика шва. Все это ведет к тому, что вероятность обнаружения недопустимых объемных дефектов невелика (10-12%), но недопустимые плоскостнные дефекты определяются гораздо надежнее (~ 85 %). Главные параметры провисания (ширина, глубина и угол смыкания с поверхностью изделия) считаются случайными величинами для данного типоразмера труб; средние значения параметров составляют 6,5 мм; 2,7 мм и 56°30" соответственно.

Прокат ведет себя как неоднородная и анизотропная среда с достаточно сложными зависимостями скоростей упругих волн от направления прозвучивания и поляризации. Изменение скорости звука близко симметрично относительно середины сечения листа, причем вблизи этой середины скорость поперечной волны может значительно (до 10 %) уменьшаться относительно окружающих областей. Скорость поперечной волны в исследуемых объектах меняется в диапазоне 3070...3420 м/с. На глубине до 3 мм от поверхности проката вероятно незначительное (до 1 %) увеличение скорости поперечной волны.

Помехоустойчивость контроля значительно усиливается при использовании наклонных раздельно-совмещенных ПЭП типа РСН (рис. 2), названных хордовыми. Они были созданы в МГТУ им. Н.Э. Баумана. Особенность контроля состоит в том, что при выявлении дефектов не нужно поперечноге сканирование, оно нужно только по периметру трубы при прижатии к шву передней грани преобразователя.

Рис. 2. Наклонный хордовый РСН-ПЭП: 1- излучатель: 2 - приемник

Трубы диаметром 108...920 мм.

Трубы диаметром 108-920 мм и с Н в диапазоне 4-25 мм также совершают односторонней сваркой без обратной подварки. До последнего времени контроль над этими соединениями контролировались совмещенными ПЭП по методике, изложенной для труб диаметром 28-100 мм. Но известная методика контроля предполагает наличие существенно большой зоны совпадений (зоны неопределенности).Это ведет к незначительности достоверности оценки качества соединения. Совмещенные ПЭП обладают высоким уровнем реверберационных шумов, осложняющих расшифровку сигналов, и неравномерность чувствительности, которую не всегда получается компенсировать имеющимися средствами. Использование хордовых раздельно-совмещенных ПЭП для контроля данного типоразмера сварных соединений не эффективно в связи с тем, что из-за ограниченности значений углов ввода ультразвуковых колебаний с поверхности сварного соединения габариты преобразователей несоразмерно увеличиваются, увеличивается и площадь акустического контакта.

Созданные в МГТУ им. Н.Э. Баумана наклонные ПЭП с выравненной чувствительностью используются для контроля сварных стыков диаметром более 10 см. Выравнивание чувствительности добиваются выбором угла разворота 2 так, чтобы середина и верхняя часть шва прозвучивались центральным однократно отраженным лучом, а нижняя часть обследовалась прямыми периферийными лучами, падающими на дефект под углом Y, от центрального. На рис. 3. изображен график зависимости угла ввода поперечной волны от угла разворота и раскрытия диаграммы направленности Y. Здесь в ПЭП падающая и отраженная от дефекта волны горизонтально поляризованные (SН -волна).

Рис. 3. Изменение угла ввода альфа, в пределе половины угла раскрытия диаграммы направленности РСН-ПЭП в зависимости от угла разворота дельта.

Из графика видно, что при контроле изделий Н =25 мм неравномерность чувствительности РС-ПЭП может составлять до 5 дБ, а для совмещенного ПЭП она может достигнуть 25 дБ. РС-ПЭП обладает повышенным уровнем сигнала и имеет повышенную абсолютную чувствительность. РС-ПЭП четко выявляется зарубка площадью 0,5 мм2 при контроле сварного соединения толщиной 1 см как прямым, так и однократно отраженным лучом при отношении полезный сигнал/помеха 10 дБ. Процесс проведения контроля рассмотренными ПЭП аналогичен процедуре проведения совмещенным ПЭП.

Трубы диаметром 1020...1420 мм.

Для выполнения сварных стыков труб диаметром от 1020 и 1420 мм с Н в диапазоне от 12 до30 мм используют двустороннюю сварку или сварку с подваркой обратного валика шва. В швах, сделанных двусторонней сваркой чаще всего ложные сигналы от задней кромки валика усиления имеют меньшую помеху, чем в односторонних швах. Они меньше по амплитуде из-за более плавных очертаний валика и дальше по развертке. В связи с этим для дефектоскопии это наиболее удобный типоразмер труб. Но проведенные в МГТУ им. Н.Э. Баумана исследования показывают, что металл этих труб характеризуется наибольшей анизотропией. В целях минимизации влияния анизотропии на выявляемость дефектов лучше всего использовать ПЭП на частоту 2,5 МГц с углом призмы 45°, а не 50°, как советуется в большинстве нормативных документов на контроль подобных соединений. Более высокая достоверность контроля достигнута при применении ПЭП типа РСМ-Н12. Но в отличие от способа, изложенного для труб диаметром 28-100 мм, при контроле данных соединений нет зоны неопределенности. В остальном принцип контроля остается таким же. При применении РС-ПЭП настройку скорости развертки и чувствительности рекомендуется производить по вертикальному сверлению. Настройка скорости развертки и чувствительности наклонных совмещенных ПЭП должна производится по угловым отражателям соответствующего размера.

Осуществляя контроль сварных швов необходимо помнить что в околошовной зоне могут случаться расслоения металла, которые усложняют определение координат дефекта. Зону с найденным наклонным ПЭП дефектом необходимо проверить прямым ПЭП для уточнения особенностей дефекта и выявления истинного значения глубины дефекта.

В нефтехимической промышленности, атомной энергетике для производства трубопроводов, сосудов нашли широкое применение плакированные стали. В качестве плакировки внутренней стенки таких конструкций берутся аустенитные стали наносимые методом наплавки, прокатки или взрыва толщиной в 5-15 мм.

Метод контроля данных сварных соединений предуполагает оценку сплошности перлитной части сварного шва, в том числе и зоны сплавления с восстановительной антикоррозионной наплавкой. Сплошность тела самой наплавки контролю не подлежит.

Но из-за отличия акустических качеств основного металла и аустенйтной стали от границы раздела при узи контроле появляются эхо-сигналы, образующие помехи обнаружению таких дефектов, как отслоений плакировки и поднаплавочных трещин. Наличие плакировки значительно влияет на параметры акустического тракта ПЭП.

В связи с этим для проведения контроля толстостенных сварных швов плакированных трубопроводов стандартные технологические решения не дают должного результата.

Многолетний исследования ряда специалистов: В.Н. Радько, Н.П. Разыграева, В.Е. Белого, В.С. Гребенника и др позволили определить главные особенности акустического тракта, разработать рекомендации по оптимизации его параметров, создать технологию узи контроля сварных швов с аустенитной плакировкой.

В работах специалистов установлено, что при переотражении пучка ультразвуковых волн от границы перлит-аустенитная плакировка диаграмма направленности почти не именяется в ситуации плакировки прокаткой и значительно деформируется в случае осуществления плакировки наплавкой. Ее ширина резко возрастает, а в пределах главного лепестка появляются осцилляции в 15-20 дБ в зависимости от типа наплавки. Имеет место быть значительное смещение точки выхода отражения от границы плакировки пучка по сравнению с его геометрическими координатами и перемена скорости поперечных волн в переходной зоне.

С учетом этих особенностей технология контроля сварных соединений плакированных трубопроводов предполагает предварительное обязательное измерение толщины перлитной части.

Лучшего нахождения плоскостных дефектов (трещин и несплавлений) достигается при помощи применения ПЭП с углом ввода 45° и на частоты 4 МГц. Лучшая выявляемость вертикально ориентированных дефектов на угле ввода 45° по сравнению с углами 60 и 70° обусловлена тем, что при прозвучивании последними угол встречи пучка с дефектом близок к 3-му критическому, при котором коэффициент отражения поперечной волны является наименьшим.

На частоте 2 МГц при прозвучивании снаружи трубы эхо-сигналы от дефектов экранируются интенсивным и длительным сигналом шума. Помехоустойчивость ПЭП на частоту 4 МГц в среднем на 12 дБ выше, а значит полезный сигнал от дефекта, располагающегося в непосредственной близости от границы наплавки, станет лучше разрешаться на фоне помех.

При прозвучивании изнутри трубы через наплавку максимальная помехоустойчивость устанавливается при настройке ПЭП на частоту 2 МГц.

Метод контроля сварных швов трубопроводов с наплавкой регламентируется руководящим документом Госатомнадзора РФПНАЭГ-7-030-91.

ГОСТ 17410-78

Группа В69

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

КОНТРОЛЬ НЕРАЗРУШАЮЩИЙ

ТРУБЫ МЕТАЛЛИЧЕСКИЕ БЕСШОВНЫЕ ЦИЛИНДРИЧЕСКИЕ

Методы ультразвуковой дефектоскопии

Non-destructive testing. Metal seamless cylindrical pipes and tubes. Ultrasonic methods of defekt detection


МКС 19.100
23.040.10

Дата введения 1980-01-01

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством тяжелого, энергетического и транспортного машиностроения СССР

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 06.06.78 N 1532

3. ВЗАМЕН ГОСТ 17410-72

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Номер пункта, подпункта

5. Ограничение срока действия снято по протоколу N 4-93 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 4-94)

6. ИЗДАНИЕ (сентябрь 2010 г.) с Изменениями N 1, , утвержденными в июне 1984 г., июле 1988 г. (ИУС 9-84, 10-88)


Настоящий стандарт распространяется на прямые металлические однослойные бесшовные цилиндрические трубы, изготовленные из черных и цветных металлов и сплавов, и устанавливает методы ультразвуковой дефектоскопии сплошности металла труб для выявления различных дефектов (типа нарушения сплошности и однородности металла), расположенных на наружной и внутренней поверхностях, а также в толще стенок труб и обнаруживаемых ультразвуковой дефектоскопической аппаратурой.

Действительные размеры дефектов, их форма и характер настоящим стандартом не устанавливаются.

Необходимость проведения ультразвукового контроля, объем его и нормы недопустимых дефектов должны определяться в стандартах или технических условиях на трубы.

1. АППАРАТУРА И СТАНДАРТНЫЕ ОБРАЗЦЫ

1.1. При контроле используют: ультразвуковой дефектоскоп; преобразователи; стандартные образцы, вспомогательные устройства и приспособления для обеспечения постоянных параметров контроля (угла ввода, акустического контакта, шага сканирования).

Форма паспорта стандартного образца приведена в приложении 1а.


1.2. Допускается применять аппаратуру без вспомогательных приспособлений и устройств для обеспечения постоянных параметров контроля при перемещении преобразователя вручную.

1.3. (Исключен, Изм. N 2).

1.4. Выявленные дефекты металла труб характеризуются эквивалентной отражающей способностью и условными размерами.

1.5. Номенклатура параметров преобразователей и методы их измерений - по ГОСТ 23702 .


1.6. При контактном способе контроля рабочую поверхность преобразователя притирают по поверхности трубы при наружном диаметре ее меньше 300 мм.

Вместо притирки преобразователей допускается использование насадок и опор при контроле труб всех диаметров преобразователями с плоской рабочей поверхностью.

1.7. Стандартным образцом для настройки чувствительности ультразвуковой аппаратуры при проведении контроля служит отрезок бездефектной трубы, выполненный из того же материала, того же типоразмера и имеющий то же качество поверхности, что и контролируемая труба, в котором выполнены искусственные отражатели.

Примечания:

1. Для труб одного сортамента, отличающихся по качеству поверхности и составу материалов, допускается изготовление единых стандартных образцов, если при одинаковой настройке аппаратуры амплитуды сигналов от одинаковых по геометрии отражателей и уровень акустических шумов совпадают с точностью не менее ±1,5 дБ.

2. Допускается предельное отклонение размеров (диаметр, толщина) стандартных образцов от размеров контролируемой трубы, если при неизменной настройке аппаратуры амплитуды сигналов от искусственных отражателей в стандартных образцах отличаются от амплитуды сигналов от искусственных отражателей в стандартных образцах того же типоразмера, что и контролируемая труба, не более чем на ±1,5 дБ.

3. Если металл труб неоднороден по затуханию, то допускается разделение труб на группы, для каждой из которых должен быть изготовлен стандартный образец из металла с максимальным затуханием. Методика определения затухания должна быть указана в технической документации на контроль.

1.7.1. Искусственные отражатели в стандартных образцах для настройки чувствительности ультразвуковой аппаратуры на контроль продольных дефектов должны соответствовать черт.1-6, на контроль поперечных дефектов - черт.7-12, на контроль дефектов типа расслоений - черт.13-14.

Примечание. Допускается использовать другие типы искусственных отражателей, предусмотренные в технической документации на контроль.

1.7.2. Искусственные отражатели типа риски (см. черт.1, 2, 7, 8) и прямоугольного паза (см. черт.13) используются преимущественно при автоматизированном и механизированном контроле. Искусственные отражатели типа сегментного отражателя (см. черт.3, 4, 9, 10), зарубки (см. черт.5, 6, 11, 12), плоскодонного отверстия (см. черт.14) используются преимущественно при ручном контроле. Вид искусственного отражателя, его размеры зависят от способа контроля и от типа применяемой аппаратуры и должны предусматриваться в технической документации на контроль.

Черт.1

Черт.3

Черт.8

Черт.11

1.7.3. Риски прямоугольной формы (черт.1, 2, 7, 8, исполнения 1) применяются для контроля труб с номинальной толщиной стенки, равной или большей 2 мм.

Риски треугольной формы (черт.1, 2, 7, 8, исполнения 2) применяются для контроля труб с номинальной толщиной стенки любой величины.

(Измененная редакция, Изм. N 1).

1.7.4. Угловые отражатели типа сегмента (см. черт.3, 4, 9, 10) и зарубки (см. черт.5, 6, 11, 12) используются при ручном контроле труб наружным диаметром свыше 50 мм и толщиной более 5 мм.

1.7.5. Искусственные отражатели в стандартных образцах типа прямоугольного паза (см. черт.13) и плоскодонных отверстий (см. черт.14) используются для настройки чувствительности ультразвуковой аппаратуры на выявление дефектов типа расслоений при толщине стенки трубы больше 10 мм.

1.7.6. Допускается изготовление стандартных образцов с несколькими искусственными отражателями при условии, что расположение их в стандартном образце исключает их взаимное влияние друг на друга при настройке чувствительности аппаратуры.

1.7.7. Допускается изготовление составных стандартных образцов, состоящих из нескольких отрезков труб с искусственными отражателями при условии, что границы соединения отрезков (сваркой, свинчиванием, плотной посадкой) не влияют на настройку чувствительности аппаратуры.

1.7.8. В зависимости от назначения, технологии изготовления и качества поверхности контролируемых труб следует использовать один из типоразмеров искусственных отражателей, определяемых рядами:

Для рисок:

Глубина риски , % от толщины стенки трубы: 3, 5, 7, 10, 15 (±10%);

- длина риски , мм: 1,0; 2,0; 3,0; 5,0; 10,0; 25,0; 50,0; 100,0 (±10%);

- ширина риски , мм: не более 1,5.

Примечания:

1. Длина риски дана для ее части, имеющей постоянную глубину в пределах допуска; участки входа и выхода режущего инструмента не учитываются.

2. Допускаются на углах риски закругления, связанные с технологией ее изготовления, не больше 10% .


Для сегментных отражателей:

- высота , мм: 0,45±0,03; 0,75±0,03; 1,0±0,03; 1,45±0,05; 1,75±0,05; 2,30±0,05; 3,15±0,10; 4,0±0,10; 5,70±0,10.

Примечание. Высота сегментного отражателя должна быть больше длины поперечной ультразвуковой волны.


Для зарубок:

- высота и ширина должны быть больше длины поперечной ультразвуковой волны; отношение должно быть более 0,5 и менее 4,0.

Для плоскодонных отверстий:

- диаметр 2, мм: 1,1; 1,6; 2,0; 2,5; 3,0; 3,6; 4,4; 5,1; 6,2.

Расстояние плоского дна отверстия от внутренней поверхности трубы должно составлять 0,25; 0,5; 0,75, где - толщина стенки трубы.

Для прямоугольных пазов:

ширина , мм: 0,5; 1,0; 1,5; 2,0; 2,5; 3,0; 3,5; 4,0; 5,0; 10,0; 15,0 (±10%).

Глубина должна составлять 0,25; 0,5; 0,75, где - толщина стенки трубы.

Примечание. Для плоскодонных отверстий и прямоугольных пазов допускаются другие значения глубины , предусмотренные в технической документации на контроль.


Параметры искусственных отражателей и методики их проверки указывают в технической документации на контроль.

(Измененная редакция, Изм. N 1).

1.7.9. Высота макронеровностей рельефа поверхности стандартного образца должна быть в 3 раза меньше глубины искусственного углового отражателя (риски, сегментного отражателя, зарубки) в стандартном образце, по которому проводится настройка чувствительности ультразвуковой аппаратуры.

1.8. При контроле труб с отношением толщины стенки к наружному диаметру 0,2 и менее искусственные отражатели на наружной и внутренней поверхностях выполняют одинакового размера.

При контроле труб с большим отношением толщины стенки к наружному диаметру размеры искусственного отражателя на внутренней поверхности должны устанавливаться в технической документации на контроль, однако допускается увеличение размеров искусственного отражателя на внутренней поверхности стандартного образца, по сравнению с размерами искусственного отражателя на наружной поверхности стандартного образца, не более чем в 2 раза.

1.9. Стандартные образцы с искусственными отражателями разделяются на контрольные и рабочие. Настройка ультразвуковой аппаратуры проводится по рабочим стандартным образцам. Контрольные образцы предназначены для проверки рабочих стандартных образцов для обеспечения стабильности результатов контроля.

Контрольные стандартные образцы не изготовляют, если рабочие стандартные образцы проверяют измерением параметров искусственных отражателей непосредственно не реже одного раза в 3 мес.

Соответствие рабочего образца контрольному проверяют не реже одного раза в 3 мес.

Рабочие стандартные образцы, которые не применяют в течение указанного периода, проверяют перед их использованием.

При несоответствии амплитуды сигнала от искусственного отражателя и уровня акустических шумов образца контрольному на ±2 дБ и более его заменяют новым.

(Измененная редакция, Изм. N 1).

2. ПОДГОТОВКА К КОНТРОЛЮ

2.1. Перед проведением контроля трубы очищают от пыли, абразивного порошка, грязи, масел, краски, отслаивающейся окалины и других загрязнений поверхности. Острые кромки на торце трубы не должны иметь заусенцев.

Необходимость нумерации труб устанавливают в зависимости от их назначения в стандартах или технических условиях на трубы конкретного типа. По согласованию с заказчиком трубы могут не нумероваться.

(Измененная редакция, Изм. N 2).

2.2. Поверхности труб не должны иметь отслоений, вмятин, забоин, следов вырубки, затеканий, брызг расплавленного металла, коррозионных повреждений и должны соответствовать требованиям к подготовке поверхности, указанным в технической документации на контроль.

2.3. Для механически обработанных труб параметр шероховатости наружной и внутренней поверхностей по ГОСТ 2789 40 мкм.

(Измененная редакция, Изм. N 1).

2.4. Перед контролем проверяют соответствие основных параметров требованиям технической документации на контроль.

Перечень параметров, подлежащих проверке, методика и периодичность их проверки должны предусматриваться в технической документации к применяемым средствам ультразвукового контроля.

2.5. Настройку чувствительности ультразвуковой аппаратуры производят по рабочим стандартным образцам с искусственными отражателями, указанными на черт.1-14 в соответствии с технической документацией на контроль.

Настройка чувствительности автоматической ультразвуковой аппаратуры по рабочим стандартным образцам должна отвечать условиям производственного контроля труб.

2.6. Настройку чувствительности автоматической ультразвуковой аппаратуры по стандартному образцу считают законченной, если не менее чем при пятикратном пропускании образца через установку в установившемся режиме происходит 100%-ная регистрация искусственного отражателя. При этом, если позволяет конструкция трубопротяжного механизма, стандартный образец перед вводом в установку поворачивают каждый раз на 60-80° относительно предшествующего положения.

Примечание. При массе стандартного образца больше 20 кг допускается пятикратное пропускание в прямом и обратном направлениях участка стандартного образца с искусственным дефектом.

3. ПРОВЕДЕНИЕ КОНТРОЛЯ

3.1. При контроле качества сплошности металла труб применяют эхо-метод, теневой или зеркально-теневой методы.

(Измененная редакция, Изм. N 1).

3.2. Ввод ультразвуковых колебаний в металл трубы осуществляется иммерсионным, контактным или щелевым способом.

3.3. Применяемые схемы включения преобразователей при контроле приведены в приложении 1.

Допускается применять другие схемы включения преобразователей, приведенные в технической документации на контроль. Способы включения преобразователей и типы возбуждаемых ультразвуковых колебаний должны обеспечивать надежное выявление искусственных отражателей в стандартных образцах в соответствии с пп.1.7 и 1.9.

3.4. Контроль металла труб на отсутствие дефектов достигается сканированием поверхности контролируемой трубы ультразвуковым пучком.

Параметры сканирования устанавливаются в технической документации на контроль в зависимости от применяемой аппаратуры, схемы контроля и размеров дефектов, подлежащих выявлению.

3.5. Для увеличения производительности и надежности контроля допускается применение многоканальных схем контроля, при этом преобразователи в контрольной плоскости должны располагаться так, чтобы исключить взаимное влияние их на результаты контроля.

Настройку аппаратуры по стандартным образцам проводят для каждого канала контроля отдельно.

3.6. Проверка правильности настройки аппаратуры по стандартным образцам должна проводиться при каждом включении аппаратуры и не реже чем через каждые 4 ч непрерывной работы аппаратуры.

Периодичность проверки определяется типом используемой аппаратуры, применяемой схемой контроля и должна устанавливаться в технической документации на контроль. При обнаружении нарушения настройки между двумя проверками вся партия проконтролированных труб подлежит повторному контролю.

Допускается в течение одной смены (не более 8 ч) проводить периодическую проверку настройки аппаратуры при помощи устройств, параметры которых определяют после настройки аппаратуры по стандартному образцу.

3.7. Метод, основные параметры, схемы включения преобразователей, способ ввода ультразвуковых колебаний, схему прозвучивания, способы разделения ложных сигналов и сигналов от дефектов устанавливают в технической документации на контроль.

Форма карты ультразвукового контроля труб приведена в приложении 2.

3.6; 3.7. (Измененная редакция, Изм. N 1).

3.8. В зависимости от материала, назначения и технологии изготовления трубы проверяют на:

а) продольные дефекты при распространении ультразвуковых колебаний в стенке трубы в одном направлении (настройка по искусственным отражателям, черт.1-6);

б) продольные дефекты при распространении ультразвуковых колебаний в двух направлениях навстречу друг другу (настройка по искусственным отражателям, черт.1-6);

в) продольные дефекты при распространении ультразвуковых колебаний в двух направлениях (настройка по искусственным отражателям, черт.1-6) и поперечные дефекты при распространении ультразвуковых колебаний в одном направлении (настройка по искусственным отражателям черт.7-12);

г) продольные и поперечные дефекты при распространении ультразвуковых колебаний в двух направлениях (настройка по искусственным отражателям черт.1-12);

д) дефекты типа расслоений (настройка по искусственным отражателям (черт.13, 14) в сочетании с подпунктами а, б, в, г .

3.9. При контроле чувствительность аппаратуры настраивают так, чтобы амплитуды эхо-сигналов от внешнего и внутреннего искусственных отражателей отличались не более чем на 3 дБ. Если это различие нельзя компенсировать электронными устройствами или методическими приемами, то контроль труб на внутренние и внешние дефекты проводят по раздельным электронным каналам.

4. ОБРАБОТКА И ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ КОНТРОЛЯ

4.1. Оценку сплошности металла труб проводят по результатам анализа информации, получаемой в результате контроля, в соответствии с требованиями, установленными в стандартах или технических условиях на трубы.

Обработка информации может выполняться либо автоматически с использованием соответствующих устройств, входящих в установку контроля, либо дефектоскопистом по данным визуальных наблюдений и измеряемым характеристикам обнаруживаемых дефектов.

4.2. Основной измеряемой характеристикой дефектов, по которой производят разбраковку труб, является амплитуда эхо-сигнала от дефекта, которую измеряют сравнением с амплитудой эхо-сигнала от искусственного отражателя в стандартном образце.

Дополнительные измеряемые характеристики, используемые при оценке качества сплошности металла труб, в зависимости от применяемой аппаратуры, схемы и метода контроля и искусственных настроечных отражателей, назначения труб указывают в технической документации на контроль.

4.3. Результаты ультразвукового контроля труб вписывают в журнал регистрации или в заключение, где должны быть указаны:

- типоразмер и материал трубы;

- объем контроля;

- техническая документация, по которой выполняется контроль;

- схема контроля;

- искусственный отражатель, по которому настраивалась чувствительность аппаратуры при контроле;

- номера стандартных образцов, применяемых при настройке;

- тип аппаратуры;

- номинальная частота ультразвуковых колебаний;

- тип преобразователя;

- параметры сканирования.

Дополнительные сведения, подлежащие записи, порядок оформления и хранения журнала (или заключения), способы фиксации выявленных дефектов должны устанавливаться в технической документации на контроль.

Форма журнала ультразвукового контроля труб приведена в приложении 3.

(Измененная редакция, Изм. N 1).

4.4. Все отремонтированные трубы должны пройти повторный ультразвуковой контроль в полном объеме, определенном в технической документации на контроль.

4.5. Записи в журнале (или заключении) служат для постоянного контроля за соблюдением всех требований стандарта и технической документации на контроль, а также для статистического анализа эффективности контроля труб и состояния технологического процесса их производства.

5. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

5.1. При проведении работ по ультразвуковому контролю труб дефектоскопист должен руководствоваться действующими "Правилами технической эксплуатации электроустановок потребителей и правилами технической безопасности при эксплуатации электроустановок потребителей "*, утвержденными Госэнергонадзором 12 апреля 1969 года с дополнениями от 16 декабря 1971 года и согласованными с ВЦСПС 9 апреля 1969 года.
________________
* На территории Российской Федерации документ не действует. Действуют Правила технической эксплуатации электроустановок потребителей и Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок (ПОТ Р М-016-2001, РД 153-34.0-03.150-00). - Примечание изготовителя базы данных.

5.2. Дополнительные требования по технике безопасности и противопожарной технике устанавливаются в технической документации на контроль.

При эхо-методе контроля применяют совмещенную (черт.1-3) или раздельную (черт.4-9) схемы включения преобразователей.

При совмещении эхо-метода и зеркально-теневого метода контроля применяют раздельно-совмещенную схему включения преобразователей (черт.10-12).

При теневом методе контроля применяют раздельную (черт.13) схему включения преобразователей.

При зеркально-теневом методе контроля применяют раздельную (черт.14-16) схему включения преобразователей.

Примечание к черт.1-16: Г - вывод к генератору ультразвуковых колебаний; П - вывод к приемнику.

Черт.4

Черт.6

Черт.16

ПРИЛОЖЕНИЕ 1. (Измененная редакция, Изм. N 1)

ПРИЛОЖЕНИЕ 1a (cправочное). Паспорт на стандартный образец

ПРИЛОЖЕНИЕ 1a
Справочное

ПАСПОРТ
на стандартный образец N

Наименование предприятия-изготовителя

Дата изготовления

Назначение стандартного образца (рабочий или контрольный)

Марка материала

Типоразмер трубы (диаметр, толщина стенки)

Тип искусственного отражателя по ГОСТ 17410-78

Вид ориентации отражателя (продольная или поперечная)

Размеры искусственных отражателей и способ измерения:

Тип отражателя

Поверхность нанесения

Способ измерения

Параметры отражателя, мм

Риска (треугольная или прямоугольная)

Сегментный отражатель

Плоскодонное отверстие

расстояние

Прямоугольный паз

Дата периодической проверки

должность

фамилия, и., о.

Примечания:

1. В паспорте указываются размеры искусственных отражателей, которые изготовляются в данном стандартном образце.

2. Паспорт подписывается руководителями службы, проводящей аттестацию стандартных образцов, и службы отдела технического контроля.

3. В графе "Способ измерения" указывается метод измерения: непосредственный, при помощи слепков (пластмассовых оттисков), при помощи образцов-свидетелей (амплитудный метод) и инструмента или прибора, которыми проводились измерения.

4. В графе "Поверхность нанесения" указывается внутренняя или наружная поверхность стандартного образца.


ПРИЛОЖЕНИЕ 1а. (Введено дополнительно, Изм. N 1).

ПРИЛОЖЕНИЕ 2 (рекомендуемое). Карта ультразвукового контроля труб при ручном способе сканирования

Номер технической документации на контроль

Типоразмер труб (диаметр, толщина стенки)

Марка материала

Номер технической документации, регламентирующей нормы оценки годности

Объем контроля (направления прозвучивания)

Тип преобразователя

Частота преобразователя

Угол падения луча

Тип и размер искусственного отражателя (или номер стандартного образца) для настройки чувствительности фиксации

и поисковой чувствительности

Тип дефектоскопа

Параметры сканирования (шаг, скорость контроля)

Примечание. Карта должна составляться инженерно-техническими работниками службы дефектоскопии и согласовываться, при необходимости, с заинтересованными службами предприятия (отделом главного металлурга, отделом главного механика и т.п.).

Дата конт-
роля

Номер пакета, предъявки, серти-
фиката

Коли-
чество труб, шт.

Параметры контроля (номер стандартного образца, размеры искусственных дефектов, тип установки, схема контроля, рабочая частота УЗК, размер преобразователя, шаг контроля)

Номера прове-
ренных труб

Результаты УЗК

Подпись дефекто-
скописта (оператора-
контролера) и ОТК

Раз-
мер, мм

Мате-
риал

номера труб без де-
фектов

номера труб с дефек-
тами


ПРИЛОЖЕНИЕ 3. (Измененная редакция, Изм. N 1).



Электронный текст документа
подготовлен АО "Кодекс" и сверен по:
официальное издание
Трубы металлические и соединительные
части к ним. Часть 4. Трубы из черных
металлов и сплавов литые и
соединительные части к ним.
Основные размеры. Методы технологических
испытаний труб: Сб. ГОСТов. -
М.: Стандартинформ, 2010